
Distributed Data Delivery
in Partially Connected Networks

Group 720
Anders Grauballe, Mikkel Gade Jensen, Achuthan Paramanathan, Janne Dahl Rasmussen

Supervisors: Tatiana Kozlova Madsen, Frank H.P. Fitzek

Worksheets

7th Semester
Autumn 2007

Distributed Systems and Network Planning
Aalborg University

Preface

This is the worksheets from the project "Distributed Data Delivery in Partially Connected
Networks" carried out on the 7th semester, autumn 2007 at Distributed Systems and Network
Planning, Aalborg University.
Citations are shown as e.g. [3] and �gures and tables are numbered as e.g. 4.2 for the second
�gure/table in Chapter 4. We would like to thank our supervisor Tatiana Kozlova Madsen and
co-supervisor Frank Fitzek for support and guidance throughout the semester.

The enclosed CD contains:

• Worksheets and paper in PDF format

• Project poster from SEMCON 2007 in PDF format

• Source code for the simulation and prototype implementation

• Results and log �les from tests

• MATLAB �les used to generate graphs

Anders Grauballe Mikkel Gade Jensen

Achuthan Paramanathan Janne Dahl Rasmussen

Contents

1 Introduction 6
1.1 Scenarios . 7

1.2 Epidemic Algorithm . 10

2 Error/Erasure correction 14
2.1 Basic error detection/correction algorithms . 15

2.2 RAID . 16

2.3 XOR parity . 19

2.4 Reed-Solomon . 20

2.5 Evenodd coding . 23

3 Comparison of coding methods 24
3.1 Full Copy . 25

3.2 XOR . 25

3.3 Reed-Solomon . 27

3.4 No Redundancy . 28

3.5 Even-Odd . 28

3.6 Comparison conclusion . 28

4 Modelling 30
4.1 Scenario . 30

4.2 Probabilistic system model . 31

4.3 Resource consumption . 37

5 System Description 39

CONTENTS 5

5.1 Use Case analysis . 39

5.2 Activity Diagrams . 41

5.3 Requirements Speci�cation . 43

5.4 State diagram . 44

5.5 Time line . 46

6 Design 47
6.1 Mote - Mote communication . 47

6.2 Gateway to mote communication . 50

6.3 De�nition of internal tasks . 51

6.4 Network interfaces . 57

6.5 Header design . 58

7 Test 60
7.1 Simulation test . 60

7.2 Test of prototype . 65

7.3 Test conclusion . 69

8 Conclusion 73
8.1 Discussion . 73

8.2 Future perspectives . 74

Bibliography 76

A Results 77

B MAC Protocol 82

Chapter 1

Introduction

The basic scenario in this project is a cluster of sensors which are partially connected. A
sensor is a small device which can measure e.g. temperature, pressure etc. in the surrounding
environment. They are also able to communicate with other sensors in the area and relay
messages to a control unit or gateway.

The sensors are partially connected because they are not all active at the same time, they are
e.g. out of range or powered o�. This cluster should be used to get a message from a sender
to a receiver. The sender and receiver could, independently of each other, be either a gateway
which is connected to one, more or all sensors, or a sensor which is part of the cluster. If a
message is send to an inactive sensor/gateway, a method must be used for storing this message
in the cluster until the receiver is active again. The goal of this project is to develop such a
method. The sensors in this project can thus be used as storage devices and will in this case
be referred to as motes.

There are two very simple methods for solving the problem. The �rst method is to store the
message on one mote, which is very unreliable because it could be inactive when the receiver
mote is active again. The other method is to store the entire message on all other active motes.
This is very reliable but requires a large storage capacity.

The left graph in Figure 1.1 shows the relationship between reliability and the number of motes
a speci�c messsage is stored on. The right graph in Figure 1.1 shows the relationship between
the capacity needed and the number of motes one message is divided among.

1.1. SCENARIOS 7

Figure 1.1: The left graph shows how the reliability of getting a messages increases when the message
is copied to more nodes. The right graph shows how the needed capacity on each node decreases
when a message is split onto more nodes.

The method which should be developed during this project needs to be a trade-o� between the
two simple methods. This means that the need for capacity should be as small as possible and
the reliability should be as high as possible. This leads to the following initial problem:

• Develop a message which maximize reliability and minimize resource consumption when a
message needs to be send through a partially connected cluster of sensors.

Parameters like throughput and bandwidth is not intended to be optimized in this project and
will not be investigated further.

1.1 Scenarios

There are two possible scenarios in which the messages could be distributed: One-hop, where
every node can communicate directly with all other nodes (similar to a star topology), and
multi-hop where messages is sent through the network in an ad-hoc mannor.

1.1.1 One-hop scenario

This scenario is shown in Figure 1.2 where a gateway has a direct link to every node except
for those which are currently o�ine. The scenario applies to e.g. a cluster of sensors spread in
the ocean to measure changes in current. The gateway could be a ship which passes by on a
regular basis to collect the measurements.

8 1.1. SCENARIOS

Figure 1.2: The �gure shows a gateway connected to motes in the network through one hop. Some
are in a disconnected state (sleeping, o�-state etc.)

The problem speci�ed in Section 1 involve the necessity to store a whole message or part of
such in di�erent sensors, so if this should be relevant it is only interesting to look at the aspects
where neither the gateway or the sensor is available all the time. With regard to the gateway
it would be interesting to look at the following scenarios:

• Gateway receives measurements from sensors.

� Measurements from all sensors must be collected.

� Only some of the sensors are available at the same time as the gateway.

� Measurements from the o�ine sensors must be stored on the on-line sensors.

• One gateway sends a message through the sensors to the other gateway.

� The whole message must be received.

� The sensors must store the message until the receive gateway is available.

� The sensors can't store the entire message.

Options
Gateways One More
Gateway availability Always Some periods
Sensor availability Always Some periods
Sensor stationarity Static Dynamic
Sensor o�ine Random Speci�ed interval

Table 1.1: Options for one-hop scenario

1.1. SCENARIOS 9

So for both scenarios the sensors can only store some partial information, and therefore they
must decide how to distribute the information so the entire information is available even if some
of the sensors are not.

1.1.2 Multi-hop scenario

Multi-hop in networks is occurring when there is more than one hop in the route to the desti-
nation. The state and appearance of the node beyond the next known node, may be unknown
because this node can not be seen by the initial node.

Di�erent multi-hop scenarios:

• Gateway - network - gateway

• Gateway - network - sensor

• Sensor - network- gateway

Figure 1.3: A network where multihop is needed to send a packet

A scenario can be seen in Figure 1.3. One gateway e.g. a mobile phone wants to transmit a
mesage to another gateway. This can be done by selecting the shortest path in the network.
If one node in this path fails then the message could be corrupted or lost therefore another
approach could be used where the packets are broad/multicasted into the network so the risk
of failure is lowered. The packets will then be broadcasted by the nodes in the network until

10 1.2. EPIDEMIC ALGORITHM

they reach the destination. The disadvantage in the approach is however that the network can
become overloaded, therefore it may be better to multicast to a limited number of nodes instead
of broadcast to everyone. In case of 30 nodes in the network, the packet could be sent to 1/10
≈ 3 nodes in the network, then the performance might be better but the risk of failure is still
limited.

Further explanation of the communication �ow
The gateway will broadcast a packet to its neighbors that are in vicinity or the gateway. Then
the nodes that have received this packet will broadcast it to their neighbors. If a node receives
a packet which is already received it will discard the packet. In this way the packet will at some
time reach the destination.

Figure 1.4: Packets are distributed and stored in the network

The scenario in Figure 1.4 shows a gateway partially connected to a cluster. By sending the
packet to more than one node in the network the probability of failure is lowered.

1.2 Epidemic Algorithm

Epidemic algorithm can be used to distribute information in a dynamic ad hoc network where
nodes have limited knowledge of other active nodes or the property of that network. This
algorithm is de�ned to follow nature regarding spreading information in an environment by
just having limited knowledge of that particular environment. An example of such behavior
could be: A virus infected person A gets in contact with an uninfected person B. Then person
B will be infected with A's virus with some probability, later on B infects 5 more persons etc.
[3].

1.2. EPIDEMIC ALGORITHM 11

1.2.1 State classi�cation

In epidemic algorithm a node is de�ned to be in one of the following state at a speci�c time:

1. Susceptible: A node is said to be in susceptible state, when it does not have any message
or information which is relevant to the network and therefore it may be open to receive any
information.

2. Infective: In this state a node has a piece of information that it wants to spread to other
nodes in the network. The time-to-live concept cmax can be de�ned in this state, as the
maximum limit of times a message is transmitted e.g. each time a node transmit cmax will
be decreased by one.

3. Removed: A node in this state has the information, but does not spread it.

By combining those states, classi�cation of epidemic algorithm can be made. Those classi�ca-
tions are de�ned as follows:

Susceptible - Infective (SI)

In this classi�cation all the nodes in the network is initially susceptible. An event may trigger
a node to move to the state infective. When a node is in infective state it remains there until
the whole population is infected or cmax is set down to zero, this scenario is depicted in Figure
1.5.

Figure 1.5: This Figure shows a nodes behavior in a SI class. A node moves from susceptible to
infective when it receive an information.

Susceptible - Infective - Susceptible (SIS)

This classi�cation reminds of the SI class, the di�erence however is; after being infected, a node
is able to go back to susceptible state as shown in Figure 1.6. The event that triggers this could
for example be, the information that is to be spread is outdated or cmax = 0.

12 1.2. EPIDEMIC ALGORITHM

Figure 1.6: This Figure shows the SIS classi�cation.

Susceptible - Infective - Removed (SIR)

In this classi�cation after being infected a node begins to infect others in a network, this node
keeps infecting others until a speci�c event occurs after that it stops spreading and it will never
be infected again this scenario is shown in Figure 1.7. For instance, if a node for some reason
did not spread the information, e.g. do to hibernation, it may conclude that the information is
already distributed to the whole population.

Figure 1.7: This Figure shows the SIR classi�cation.

1.2.2 Communication methods

Based on the sates mentioned above, the communication paradigm between the nodes fall into
three major categories:

Push

An infective node x initiate by choosing a communication partner y, for an instance the closest
node in its reach, after there is a connection x sends its information to y, this is shown in Figure
1.8.

1.2. EPIDEMIC ALGORITHM 13

Figure 1.8: An infective node chooses its partner and then infects it.

Pull

In this method a susceptible node x initiate the communication and request any new information
from the connected node y. If y is infective x will receive the requested information, se Figure
1.9.

Figure 1.9: A susceptible node chooses its partner and then gets any information from the infective
node.

Push and Pull

This method combines both the pull and push methods that is, each node may choose its
partner and then either request a push or undertake the pull operation, this is shown in Figure
1.10.

Figure 1.10: Each node in this method may choose a partner and thenpush or pull the information.

Chapter 2

Error/Erasure correction

In the following, some commonly used coding schemes for error/erasure correction is discussed to
determine which one is best suited for this project. The schemes are describing how redundant
data can be added to the original data to make it fault tolerant. The aim of this project is to
distribute data once it has been encoded. The distribution of a message can be seen in Figure
2.1 where it is split into parts, redundant data is added and the parts are distributed among a
number of motes.

Figure 2.1: In this case a message is split into 3 data parts (D) and one redundant data part (RD)
is added. The parts are distributed among 4 motes

2.1. BASIC ERROR DETECTION/CORRECTION ALGORITHMS 15

2.1 Basic error detection/correction algorithms

(Main source: http://en.wikipedia.org/wiki/Hamming_code)
There are two main categories of error correction code. Convolutional codes and block codes.
Convolutional codes works on a bit stream / channel with arbitrary length, while block codes
works on blocks of bits with prede�ned �xed length. Block codes is suited for this project as
messages should be split into blocks (of the same length) to be distributed among the motes.

In the following, some of the block codes will be described.

2.1.1 Parity

Before Hamming codes, some simple and ine�cient codes were used. E.g. a single parity bit
which was added to a block of bits representing an even or odd number of "1" bits in the
block. 1 indicating an odd number and 0 indicating an even number i.e. an error free bit block
with parity always contain an even number of bits (even parity). Parity bits is only usefull for
detecting single bit errors as two bit "�ips" in one block results in the same even/odd number
of ones. Further more, a single parity bit cannot correct the bit error if any, as the position of
the faulty bit is impossible to know.

2.1.2 Repetition

Repetition schemes on the other hand is a simple but ine�cient way to correct single bit errors.
The simplest is the (3,1) scheme (triple modular redundancy) where each bit is repeated 3 times
before sending the the next one. Thus a 1 is transmitted as 111 and 0 as 000. A single bit error
would result in e.g. 101 with 1 as the majority of the three bits. This block will be corrected
into 111 and seen as a 1. The block might also be the result of a double bit error with 0 as the
original value. In that case the block would wrongfully be interpreted as a 1. The e�ciency of
this repetition scheme is only 1/3 as three times the actual information must be sent.

2.1.3 Hamming code

Hamming developed a more e�cient code which can correct single bit errors, but also detect
double bit errors. There are various versions of the Hamming code, but the simplest one is the
(7,4) code. This means that 4 data bits are encoded by adding 3 parity bits, 7 bits in total.
The 3 parity bits makes it possible to determine whether one of the 7 bits has �ipped during
transmission, and exactly which one it was. Even is the �ipped bits is one of the parity bits it
can be corrected. Furthermore, the Hamming code can detect double bit errors i.e. if a bit �ip
occurs in 2 of the 7 bits, but is not able to correct any of the 2 bit errors. The actual encoding
and decoding algorithm is not described here, but the following is an example of the encoding:

16 2.2. RAID

The bit sequence 1011 is encoded into 0110011 where the bold bits are the added parity bits.

2.2 RAID

Redundant Array of Inexpensive/Indepentent Discs (RAID) is a way of overcomming two prob-
lems in data storage on hard disc drives. The �rst problem is the fact that computer processing
power is increasing more rapidly than the speed of reading or writing to/from a disc drive or
another data storing device. This is a problem when processing a large amount of recorded data
and storing the result, because of the bottleneck in the disc I/O and the processor can not be
fully used. By combining more discs in an array, it is possible to perform parallel operations and
still consider the array as a single disc. This results in a theoretical multiplier of the read/write
speed depending on how many discs are included in the array.

The second problem in storage devices is hardware failiure. No matter how expensive or high
quality a disc drive is, it will most likely fail at some point in time. Such a failiure can result in
loss of data which can be highly critical. RAID can provide a fault tolerant setup where data is
being replicated between two discs, or make use of parity bits or entire parity discs. In case of
disc failiure on one disc, no data is lost either because a copy exists on another disc, or because
the lost data can be rebuilt by the knowledge of the parity bits. Typically RAID systems will
use either Hamming or Reed-Solomon code for parity calculation[8].

RAID comes in many di�erent setups depending on the desired properties. The setups can also
be combined to obtain both increased I/O speed and data redundancy. The 6 generel setups
are described below and a schematic setup is shown in Figure 2.2.

RAID level 0 - Striping: In RAID level 0 each disc in the RAID array is split into strips
which is alligned as shown in Figure 2.2. Data is written to the RAID array in consec-
utive strips across the discs. This way, a read operation on data devided among severel
discs, can be executed in parallel. This level o�ers no fault tolerance, but only enhanced
performance.

RAID level 1 - Mirroring: RAID level 1 works like level 0 by dividing data among the discs,
but it also introduces data redundancy by creating a full backup of each disc in the array.
This is shown in Figure 2.2 with an array of four discs duplicated on four other discs.
Write speed is the same as level 0, but read speed is potentially doubled for large amount
of data as the backup discs can be used in parallel. In case of failiure of one disc, no data
is lost as there exists a copy which can be used in stead.

RAID level 2 - Hamming words: Level 2 operates on word basis. E.g. in the setup shown
in Figure 2.2, each four bits are coded with Hamming (7,4) code to create seven bit
Hamming words. Each word is written across the discs, one bit at each disc. In case of

2.2. RAID 17

failiure the faulty disc can be replaced by a new one and the data rebuilt from the parity
bits on other discs. This setup results in a lower overhead i.e. less space used for backup.

RAID level 3 - Dedicated parity: Level 3 uses simple single bit parity (even number of
1-bits in a word) on a dedicated disc as shown i Figure 2.2. In most communication
protocols single bit parity can only detect errors, not correct them, but since it is known
which disc is broken in case of failiure, the faulty bit in each word can be corrected.

RAID level 4 - Striping parity: Like level 0 and 1, level 4 operates with strips, and uses
dedicated parity like level 3. As shown in Figure 2.2 the parity of e.g. strips 0-3 is placed
on a the �rst strip of the �fth disc. This level performs well in case of failiure, but is a
bad choice for a system with frequent small updates.

RAID level 5 - Distributed parity: Level 5 works like level 4 except that the parity strips
are distributed uniformly through the discs as shown in Figure 2.2. This is done to
compensate for the possible heavy load on a dedicated parity drive. In case of failiure
however, the reconstruction of the lost data is a more complex process.

18 2.2. RAID

Figure 2.2: RAID levels 0 to 5. The grey devices are backup and parity.[8]

2.3. XOR PARITY 19

2.3 XOR parity

This algorithm takes advances of the fact that it is possible to determine which part of a message
is missing and not just that some is missing. This case is called an erasure. Every two bit, one
bit is added so only two of the tree bits is needed to retrieve the last.

Detailed explanation: Bit sequence: 0110011110. Split up in groups of two: 01-10-01-11-10 If
the two bits are identical a 0 is added else 1 is added. This make the sequence look like this:
011-101-011-110-101. If sensor A gets the �rst bit in every group, sensor B gets number two
and sensor C gets the last one.

A: 01011
B: 10110
C: 11101

If one sensor is missing it is possible to determine which data was stored on it. If sensor C is
missing no need for recovery is needed because the C-bits are just the extra bits. If A is missing
we have: x11-x01-x11-x10-x01. And we have to �nd all x's. First group the C-bit is 1 meaning
A-bit and B-bit is not identical which makes the A-bit 0. This is done for all other groups and
the original sequence without the C-bits is found: 01-10-01-11-10.

This is a very simple algorithm, but it also takes up a lot of space. If it is assumed that all
sensors have a message of equal length and they share it with the others, they all store the
message length times 1.5. If this number should be lower it is possible to only make an extra
bit for every 3, 4, 5 bit and so on, but on the same time only one sensor out of 3, 4, 5 and so
on can be missing if the entire message should be readable. The extra bit is then determined
from the sum of the other bits, 0 if even and 1 if odd.

2.3.1 Extended XOR parity

The XOR parity algorithm can be extended be general for n + 1 nodes where n is the number
of data nodes and the extra node is a parity node. XOR operations are performed on the
data nodes to calculate the data of the parity node which makes the system recoverable if one
random node is lost. Eg. if one data node is lost, then the information of this node can be
calculated by performing XOR operations on the remaining nodes plus the parity node.

The following shows a scenario where one node is lost:

In a network with 4 nodes:

A: 0101
B: 1100
C: 0011
D: 1111

20 2.4. REED-SOLOMON

The data of parity node E is calculated by performing XOR:

0101⊕ 1100⊕ 0011⊕ 1111 = 0101 = E

If D is lost it can be recalculated by performing XOR on the remaining nodes plus the parity
node:

0101⊕ 1100⊕ 0011⊕ 0101 = 1111 = D

2.4 Reed-Solomon

Reed-Solomon (RS) is a coding technique used to ensure reliable data and to make systems
fault-tolerent. Examples of the use of RS are CD's, DVD's, Raid storage and DVB systems [4].

In the following section a description of how RS can be used in a Raid like system is given. [5]

In RS l de�ned to be the number of data devices and m is the number of checksum devices. The
total number of devices in the system is n = m + l. The data on each devices is divided into
words w that is the word size in bits. The RS coding is performed as a linearly combination of
these words and checksum words on the checksum devices. In RS it is possible to regenerate
the data if up to any m devices in the system are missing.

The following shows and example on how to recover after failure. Some theory is also explained
in this example:

In a system there are 4 devices each holding 4 bits of information, so l = 4 and w = 4. The
goal of this example is to recover the devices in the case where any 3 devices fail, so the number
of checksum devices must be m = 3. The system then consist of 7 devices and a controller
(gateway) which detects how many and which devices will fail.

The mathematical operations multiplication and division is over a Galois Field that is de�ned
to be GF (2w), addition and subtraction are performed by XOR operations and are denoted by
⊕. The operations over Galois Field is in this example performed by a table lookup [5].

The information on the devices are the following:

d1 = 0101 = 5

d2 = 1000 = 8

d3 = 1101 = 13

d4 = 1011 = 11

To compute the checksum for the checksum devices a function F is applied to the data devices:

2.4. REED-SOLOMON 21

ci = Fi (d1, d2, ..., dn) =
n∑

j=1

djfi,j

F is a m× l Vandermonde matrix which in this case is calculated like this:

F =

1 1 1 1 1

1 2 3 · · · l

...
...

...
...

1 2m−1 3m−1 · · · lm−1

10 20 30 40

11 21 31 41

12 22 32 42

=

1 1 1 1

1 2 3 4

1 4 5 3

When the Vandermonde matrix is found the checksum can be calculated Multiplications are
performed over GF (24) and the additions are done by XOR operations.

c1 = (1) (5)⊕ (1) (8)⊕ (1) (13)⊕ (1) (11)

= 5⊕ 8⊕ 13⊕ 11

= 0101⊕ 1000⊕ 1101⊕ 1011 = 1011 = 11

c2 = (1) (5)⊕ (2) (8)⊕ (3) (13)⊕ (4) (11)

= 5⊕ 3⊕ 4⊕ 10

= 0101⊕ 0011⊕ 0100⊕ 1010 = 1000 = 8

c3 = (1) (5)⊕ (4) (8)⊕ (5) (13)⊕ (3) (11)

= 5⊕ 6⊕ 12⊕ 14

= 0101⊕ 0110⊕ 1100⊕ 1110 = 0001 = 1

To recover from failures a matrix A and vector E must be de�ned. A is a matrix with the
identity I matrix in top and the Vandermonde matrix F in the bottom. E is the information
on the data and checksum devices.

22 2.4. REED-SOLOMON

A =

I

F

 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

1 2 3 4

1 4 5 3

E =

d1

d2

d3

d4

c1

c2

c3

=

5

8

13

11

11

8

1

In A′ and E′ the rows and elements of the failing devices are removed (in this case d2, d3 and
d4 are lost).

A′D = E′ ⇒

1 0 0 0

1 1 1 1

1 2 3 4

1 4 5 3

d1

d2

d3

d4

=

5

11

8

1

The system must be solved for D by performing Gaussian elimination or an equivalent operation
to get the inverse of A′, eg. by performing the matlab operation inv(gf(Aprime, 4)).

D = (A′)−1E′ ⇒ D =

1 0 0 0

3 2 6 7

4 5 7 6

6 6 1 1

5

11

8

1

To regain the information the following operations are performed:

d2 = (3) (5)⊕ (2) (11)⊕ (6) (8)⊕ (7) (1)

= 15⊕ 5⊕ 5⊕ 7 = 8

d3 = (4) (5)⊕ (5) (11)⊕ (7) (8)⊕ (6) (1)

= 7⊕ 1⊕ 13⊕ 6 = 13

2.5. EVENODD CODING 23

d4 = (6) (5)⊕ (6) (11)⊕ (1) (8)⊕ (1) (1)

= 13⊕ 15⊕ 8⊕ 1 = 11

The information in the system is then recovered.

2.5 Evenodd coding

Evenodd coding can tolerate a number of 2 erasures and is only based on parity (XOR). The
number of data devices in the system must be a prime > 2 which is a disadvantage for this
coding scheme. If n in a system is not a prime p − n virtual data devices must be added e.g.
if n = 8 then the next prime is p = 11 and 3 extra virtual data devices must be added to the
calculation. The calculation of the checksum devices will not be explained but is basically just
consisting of some XOR operations.

The evenodd scheme can be extended to be able to tolerate 3 erasures by using the Star approach
where an extra checksum device is calculated.

Chapter 3

Comparison of coding methods

Several di�erent coding methods has been described and in this worksheets a comparison will
be made so it is possible to decide which method should be used in the rest of this project. The
methods which will be compared are listed below:

• Full copy

• XOR

• RS

• No Redundancy

• Even-odd (with or without star extension)

There are several ways to compare these methods so the ones used in this worksheets will be
described in the following.

Storage requirements for one message in the system:
The �rst comparison point is how much memory is needed in the entire system when checksum
or redundancy is added. This is important to determine because one part of the aim for this
project is to �nd a method where memory consumption on each mote is minimized.

How many motes are needed to reconstruct the message:
The second point is to determine how many motes need to be available for the message to be
reconstructed. This is the second part of the aim for this project, namely to �nd a method
where the reliability is maximized.

Scalability:
Scalability is important to consider because the cost of implementing the system with a di�erent
number of motes can be the decisive factor when chosing a method. In this project high
scalability is de�ned to be when the ratio between online and o�ine motes stays the same or

3.1. FULL COPY 25

when the ratio decrease i.e. the number of o�ine motes increases more than the number of
online motes. Lov scalability is when the scalability increases i.e. the number of online motes
increases more than the number of o�ine motes when more motes are used.

Rate of code:
Rate of code is a number that shows the trade-o� between memory consumption and reliability.
Higher rates are more space e�cient but less fault tolerent [6]. The formula is : R = n

n+m ,
where n is number of data devices and m is the number of coding devices.

In the following it will be assumed that the cluster size is 12 if nothing else is mentioned.

3.1 Full Copy

In the method �Full Copy� the full message is distributed to each of the other motes. This
means that in a cluster of 12 the message size is 12 times the size of one message.

When the entire message is distributed it also means that only one mote has to be available for
the gateway to get the message. Therefore 11 out of 12 can be o�ine if the message should be
read by the gateway. Any number of the 12 motes can be missing except one, as all messages
can be found on every mote.

This method has very high scalability because the number of posible o�ine motes are always
the number og total motes minus one.

In this method, the rate of code is calculated with n = 1 and m = 11. This gives a rate of code
of R = 1

1+11 = 1
12

3.2 XOR

We are considering two di�erent kind of XOR-methods. The �rst one where a parity bit is
added in the end of each method and one where a parity bit for each two bit in the message. In
both methods each bit is distributed to di�erent motes. The �rst method will be called XOR
and the second XOR-group. In a cluster of 12 motes a message using the XOR-method has the
size of 1.09 times the original message. When using XOR-group one message has the size of 1.5
times an original message.

Using XOR one mote out out of the 12 can be o�ine and using XOR-group one out of each
three motes can be o�ine when the gateway should read the message.

With XOR it does not matter wich mote is o�ine, but with XOR-group it does matter in this
method witch motes are o�ine. Considering a scenario where each mote in a 12-mote cluster
has a message they need to distribute to the others. Each mote adds the parity-bit and sends
a part to each of two neighbors, see Figure 3.1. Then 4 motes should be dispensable but if two

26 3.2. XOR

motes in the same group are o�ine the message they share can not be received by the gateway.

Figure 3.1: This �gure shows how a cluster of 12 motes distribute their messages. Only the same
color can be dispensable at the same time. E.g. if a red mote is o�ine, only more red motes can
be o�ine at the same time, not any other (blue, yellow or green)

Scalability for XOR is low because only one mote can be missing no matter how many is added.
For XOR-group it is low to medium. This is choosen because as long as the number of motes
can be devided by three the ratio between o�ine and online motes stays the same, but when
this is not the case less motes can be o�ine (See Figure 3.2).

Figure 3.2: This �gure shows four motes where each distribute a message to two others. A group
consist of a mote in a given color, e.g. blue, and the two motes which have blue arrows pointing
to them. In this case only one mote can be o�ine at the time, because two motes from each group
need to be online

In XOR, the rate of code is calculated with n = 11 and m = 1. This gives a rate of code of
R = 11

11+1 = 11
12

In XOR-group, the rate of code is calculated with n = 2 and m = 1. This gives a rate of code

3.3. REED-SOLOMON 27

m
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 - 2 1,5 1,33 1,25 1,2 1,17 1,14 1,13 1,11 1,1 1,09 1,08 1,08 1,07
2 - - 3 2 1,67 1,5 1,4 1,33 1,29 1,25 1,22 1,2 1,18 1,17 1,15
3 - - - 4 2,5 2 1,75 1,6 1,5 1,43 1,38 1,33 1,3 1,27 1,25
4 - - - - 5 3 2,33 2 1,8 1,67 1,57 1,5 1,44 1,4 1,36
5 - - - - - 6 3,5 2,67 2,25 2 1,83 1,71 1,63 1,56 1,5
6 - - - - - - 7 4 3 2,5 2,2 2 1,86 1,75 1,67
7 - - - - - - - 8 4,5 3,33 2,75 2,4 2,17 2 1,88
8 - - - - - - - - 9 5 3,67 3 2,6 2,33 2,14
9 - - - - - - - - - 10 5,5 4 3,25 2,8 2,5
10 - - - - - - - - - - 11 6 4,33 3,5 3
11 - - - - - - - - - - - 12 6,5 4,67 3,75
12 - - - - - - - - - - - - 13 7 5
13 - - - - - - - - - - - - - 14 7,5
14 - - - - - - - - - - - - - - 15

Table 3.1: RS table showing memory consumption of one message in the entire system as a mul-
tiplier of one message. n is the total number of motes with one packet each and m is the tolerated
mote failures.

of R = 2
2+1 = 2

3

3.3 Reed-Solomon

When using this method it is possible to decide how many motes should be dispensable and
therefore Table 3.1 has been made.

It shows how man motes are dispensable in a given cluster size and what the message size is.

In this method any motes can be dispensable as long as the total number of o�ine motes does
not surpass the number of checksum motes. For more information see Section 2.4.

The scalability for Reed-Solomon is hard to determine because the ratio can vary. We have
chosen medium to high scalability, because it is possible to keep the ratio or to decrease it. It
is also possible to descrease it, but this will most likely not be used when the other options are
available.

28 3.4. NO REDUNDANCY

3.4 No Redundancy

In this method each message is divided and distributed among all the nodes. This means that
the message always have the same size as the original message i.e. 1, because no parity bit or
redundancy is added. No motes can be dispensable as all of them have a di�erent part of the
message.

The scalability for this method is not possible to calculate because no motes can be o�ine.

In this method, the rate of code is calculated with n = 12 and m = 0. This gives a rate of code
of R = 12

12+0 = 1

3.5 Even-Odd

In the Even-Odd method 2 devices are requirered as coding devices, which means that the
system can tolerate 2 erasures. The system must consist of a prime number of data devices, if
this is not the case a number of virtual devices must be added to be able to perform en/decoding.
In this case with a cluster size of 12 it means one virtual device must be added to make the
number of data devices equal a prime. The method can be extended to Even-Odd Star which
tolerates 3 erasures by adding an extra code device.

Even-odd has low scalability because the number of o�ine motes does not change when more
motes are used.

In Even-Odd without star, the rate of code is calculated with n = 10 and m = 2. This gives a
rate of code of R = 10

10+2 = 5
6

In Even-Odd with star, the rate of code is calculated with n = 9 and m = 3. This gives a rate
of code of R = 9

9+3 = 3
4

3.6 Comparison conclusion

To get an overview of the di�erent methods the Table 3.2 has been made. Reed-Solomon has
been calculted with 8 data motes and 4 checksum motes.

Neither full-copy or No Redundancy will be used in this project because the method needed
should be a mix of these two methods.

Reed-Solomon and XOR has the same size of one message and same number of o�ine modes,
but Reed-Solomon has the advantage of random o�ine motes (any 4 motes can be o�ine) and
higher scalability. The Even-odd-method has the disadvantage that only 2 (or 3) motes can be
o�ine at the time, and they have low scalability, as an advantege the message has a smaller
size in the entire system than XOR and Reed-Solomon.

3.6. COMPARISON CONCLUSION 29

Full Copy XOR XOR-group RS No redun- Even Odd Even Odd
dancy without star with star

One message 12 1,09 1,5 1,5 1 1,2 1,33
O�ine motes 11 1 4 4 0 2 3
Random o�ine Yes Yes No Yes - Yes Yes
Scalability Highest Low Low Medium/ - Low Low

medium high
Rate of code 1/12 2/3 2/3 - 5/6 3/4

Table 3.2: This table shows the di�erent parameters which has been use to compare the di�erent
methods. Reed-Solomon has been compared with 8 data-devices and 4 checksum-devices.

From this comparison it has been chosen to use Reed-Solomon in the rest of this project.

Chapter 4

Modelling

4.1 Scenario

This scenario is given to provide an example of the system and to create assumptions about
system parameters prior to the modelling.

The scenario will describe these di�erent parameters in the system:

• Time of measurements

• Number of measurements

• Online/o�ine pattern

• Arrival time of the gateway

Common assumptions of parameters for the scenarios are:

• Propagation delay = 0

• The online/o�ine period is x seconds

• The probability for a mote being online is pon and o�ine is poff = 1−pon (Bernoulli random
variable)

• The system consists of n motes

• The system can tolerate m failures (m < n)

• No motes will fail (uncontrolled breakdown) at any time

• The gateway should only arrrive after the measurement/distribution phase has ended

4.2. PROBABILISTIC SYSTEM MODEL 31

The motes are all turned on and each will decide to enter online mode with probability pon or
o�ine mode with probability 1 − pon. If a mode is online it will perform a measurement and
afterwards try to encode and distribute this measurement as n packets to the other motes. If
some motes are o�ine the distributing mote will extend its online time until the o�ine motes
change to online and the packets can be distributed.

After this procedure the mote will again decide whether the next period should be online or
o�ine. This will happen on all motes, so after some time which can be denoted as measurement
and distribution time M + D, all motes will contain n packets. When distribution is done, the
motes will enter the idle phase I, shifting between online and o�ine mode with probability pon

to enter online mode.

The gateway can then arrive at a random time within a time interval G after the M+D+I phase
has ended, triggering the online motes to send their data so the gateway is able to regenerate
the measurements from the received packets. When the gateway has left, the M +D phase will
start again and the motes which were o�ine when the gateway was present will delete their
packets and start measuring again. This scenario can be seen on a time line in Figure 4.1.

Figure 4.1: The time line shows the di�erent phases in one cycle in the system. M +D is a random
period and I is the remaining time until the gateway phase G

From this scenario it is seen that the gateway is able to recover measurements if they are
correctly distributed within M + D, and if enough motes are online at a certain time after the
M + D phase. The aim of the modelling is then to minimize the probability pon which will
save battery time and still be able to meet the reliability requirement pR for reconstruction of
a message.

4.2 Probabilistic system model

In this section a mathematical model of the sensor network is derived. The aim of this model
is to describe the probability pr that a gateway successfully will reconstruct the distributed
message from the network. In order to do so, some motes have to be online at the same time

32 4.2. PROBABILISTIC SYSTEM MODEL

when the gateway request for data. By using the Reed-Solomon coding scheme, the system can
tolerate losing as many data parts as there are checksum parts, that is, the probability of a
successfull reconstruction of the message given a correct distribution.

pr = Pr(Number of offline motes ≤ m) = Pr(Number of online motes ≥ n−m) (4.1)

As the number of online motes is a series of n independent trials with a probability of success
pon and a probability of failure 1− pon, it is a binomial random variable.[7]

4.2.1 Reconstruction probability

Calculation of pr given a correct distribution, by binomial distribution

pr = Pr(Message successfully reconstructed)

= Pr(Number of offline motes ≤ m)

= Pr(Number of online motes ≥ n−m)

= Pr(n−m motes online) + Pr(n−m + 1 motes online) + · · ·+ Pr(n motes online)

=
n∑

k=n−m

(
n

k

)
pk

on(1− pon)n−k (4.2)

The probability of the message being successfully passed to gateway pr is based on all k online
motes with individual o�ine probability of pon,

The following shows an example of a calculation of the probability pon using the binomial
distribution. To do this it is assumed that:

• The ReedSolomon RS(12,4) coding scheme is used (total number of motes is set to n = 12
and m = 4)

• The message must be reconstructed with a probability pr = 80%.

In the example pon is unknown and X denotes the number of online motes

P{X ≥ 8} =
12∑

k=8

(
12
k

)
pk

on(1− pon)12−k = 0.8 (4.3)

⇔ pon =

−0.38

0.73
(4.4)

4.2. PROBABILISTIC SYSTEM MODEL 33

According to equation 4.4, motes must be online with a probability of at least 0.73 as a proba-
bility is a non-negative number between 0 and 1.

Figure 4.2 shows the value of pon as a function of pr. It can be seen that each mote has to be
online with a probability of 0.73 at 80%. The �gure also shows the non-cooperative case with
12 motes. In this case motes must be online with probability 0.98 to make the system 80%
reliable.

From Equation 4.2 using m = 0 the non-cooperative formula is:

pr = pn
on (4.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 0.9815
Y: 0.8

X: 0.7307
Y: 0.8

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 4.2: The graph shows the relationship between the system reliability pr and the online
probability of the individual mote pon. The bold line is RS(12,4) and the thin line is RS(12,0) i.e.
the non-cooperative case.

34 4.2. PROBABILISTIC SYSTEM MODEL

4.2.2 Distribution probability

Probability that one message is distributed to all motes within the M + D phase under the
assumption that only one message is present in the system. I.e. a sensor is distributing a
message to n motes which are in idle state.

Figure 4.3 shows the decision periods of a mote in idle state. This case shows the worst case of
a continuously o�ine mote until (N − 1)T which means that the message can still be recovered
in the last period where the mote is online.

Figure 4.3: Worst case of a mote being continuously o�ine until time (k − 1)T and still receive a
message before time kT

The probability of successful distribution is also calculated based on the binomial distribution
where each trial is a mote being o�ine all the time within N · T or not. At each period T in
time, the mote will make an independent decision with probability p. Thus the probability of
the same state (on/o�) in N periods is pN

pd = Pr(Message successfully distributed in time N · T)

= Pr(All motes online somewhere within time N · T)

= 1− Pr(One or more motes still offline at time N · T)

= 1− Pr(Y ≥ 1mote still offline at N · T)

= 1−
n∑

i=1

Pr(Y = i)

= 1−
n∑

i=1

(
n

i

)
(pN

off)i(1− pN
off)n−i

= 1−
n∑

i=1

(
n

i

)
((1− pon)N)i(1− (1− pon)N)n−i (4.6)

In Figure 4.4 the distribution probability pd is shown as a function of the online probability pon

with 10 di�erent N .

4.2. PROBABILISTIC SYSTEM MODEL 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9
N = 10

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 d

is
tr

ib
ut

ed
 (

p d)

Online probability (p
on

)

Figure 4.4: The probability that the message is distributed within N · T as a function of the online
probability pon . The graphs are showing the relationship for di�erent N . Still RS(12,4) is used

4.2.3 Total system reliability

From Equation 4.6 and 4.2 the total system reliability is:

pR = pd · pr = {1−
n∑

i=1

(
n

i

)
((1− pon)N)i(1− (1− pon)N)n−i}

n∑

k=n−m

(
n

k

)
pk

on(1− pon)n−k(4.7)

Assuming independency of the two events, and that the message can not be reconstructed before
distribution is complete. Figure 4.5 shows the graphs of Equation 4.7. From the graph it can
be seen that the relationship is approximately the same as pr for large N .

36 4.2. PROBABILISTIC SYSTEM MODEL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 1

N = 2

N = 3
N = 4

N = 5

N = 6,..,10

T
ot

al
 r

el
ia

bi
lit

y
(p

R
)

Online probability (p
on

)

Figure 4.5: The total reliability pR as a function of the online probability pon. The graphs are
showing the relationship for di�erent N

The system reliability can be increased by making a small change of the scenario e.i. if the
distribution is not complete when gateway arrives, the distributing motes can just send the
whole message to the gateway directly. This yields the following reliability:

pR = Pr(Message successfully reconstructed)

= Pr(Distribution successfull) · Pr(n−m motes online)

+Pr(Distribution unsuccessful) · 1
= pdpr + (1− pd) (4.8)

Figure 4.8 shows the graph of the extended scenario of Equation 4.8 compared with the basic
scenario of Equation 4.7. It can be seen that be increased for smaller pon, but not for higher
pon. It seems that the system reliability goes to 1 as pon goes to 0, but this also means that few
motes will be online when the gateway arrives and thus few measurements will be available. Of
course if pon = 0 no measurements will be available.

4.3. RESOURCE CONSUMPTION 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ot

al
 r

el
ia

bi
lit

y
(p

R
)

Online probability (p
on

)

Figure 4.6: The total reliability pR as a function of the online probability pon. The graphs are
showing the relationship for N = 5. The solid line is Equation 4.7 and the x marks is the extended
scenario of equation 4.8. RS(12,4)

4.3 Resource consumption

4.3.1 Memory

The memory consumption in the entire system is shown in Table 3.1 for di�erent n and m. The
general formula is derived in the following.

The system consists of n motes in total, the number of checksum motes is m which leaves n−m

data motes. Each data mote and checksum mote holds 1
n−m of the message. Thus the total

memory consumption in the system ctotal is:

ctotal =
n−m

n−m
+

m

n−m

=
n

n−m
(4.9)

This ratio is also the total memory consumption in each device when holding messages for all

38 4.3. RESOURCE CONSUMPTION

other devices (including own message).

4.3.2 Energy

The energy consumption can be expressed as the online probability times idle energy consump-
tion plus the energy used for distribution: Etotal = pon · Eidle + Edist

Chapter 5

System Description

5.1 Use Case analysis

The use case diagram of the system, which is shown on �gure 5.1, describes the general inter-
action between motes, environment and the Gateway. These interactions are grouped in two
areas of use.

Figure 5.1: Use Case diagram of the system

40 5.1. USE CASE ANALYSIS

5.1.1 Sensor

Measure Conditions
The sensor must be able to measure various conditions in the environment e.g. temperature,
light intensity etc. The following actions is executed:

1. New measurements are needed (determined by e.g. periodic scheduling or signi�cant changes
in the environment)

2. The sensor retrieves measurements from the surrounding environment.

3. The measurements are stored in the memory of the sensor

Encode Data
The measured data must be encoded by adding redundant data and split into n parts for
distribution to other motes. This is an internal use case which does not involve any external
actors. The following steps are executed:

1. The data (measurement) is devided into n parts

2. The encoding is done to obtain m pieces of redundant data. Same size as the data parts.

3. A sequence number is atached to each part (data and redundant data) to link them together
for later decoding.

Distribute Data
The encoded data must be distributed to n+m devices to ensure reliability. The following steps
are executed:

1. The data and redundant data parts are sent one by one to di�erent available motes.

2. One part is kept by the device i.e. using itself as one of the n+m motes.

3. If less than n+m devices is online, the sensor device must wait for the remaining devices to
become online.

5.1.2 Mote

Receive Data
Receive data, which involves the interaction between two motes, where a sensor sends packet
to a mote in the network. The procedure for this case includes:

1. Listen for incomming data.

5.2. ACTIVITY DIAGRAMS 41

2. Receive available data from the network.

3. Stored the received data in memory.

Deliver Data
This use case shows the interaction between a mote and the gateway. A mote provides access
to its data e.g. to be collected by a Gateway. The following states the procedure of this case.

1. The Gateway broadcasts requests for data to the network.

2. When a data mote detects the presence of a Gateway, it will transmit its data.

5.2 Activity Diagrams

In this section the UML activity diagrams of the system is analyzed. Each diagram shows which
activity is executed and in what order.

Figure 5.2: Activity diagram for device

42 5.2. ACTIVITY DIAGRAMS

Figure 5.3: Activity diagram for gateway

5.2.1 Activity Scheduler

In this section the scheduling activity of the embedded device is described. The scheduling is
driven by a kernel which consists of a number of processes; Measure, State decision and Receive.
Each process is able to apply for processor time, when it receives a message e.g. measurement
data from a neighboring sensor, se �gure 5.4. The received message is then stored in a mail-
queue according to the priority of the message. The scheduler then gives processor time to the
highest priority process to execute its received message. Two equally prioritized messages will
be handled by the scheduler regarding to the FIFO (�rst in �rst out) principle.

Figure 5.4: Design diagram of the data driven kernel.

As it described in �gure 5.4, the data driven kernel has three processes where each has access

5.3. REQUIREMENTS SPECIFICATION 43

to a mail-queue where the received messages are stored, meaning each processes can apply for
processor time for their messages according to the priority of the received message. Following
explanation gives an overview of a scenario that may accrue:

1. The receive process initiates by listing to the RF to see if there is any message e.g. from the
gateway or from other devices in the network.

2. If receive process identi�es a pending message from the gateway it applies for processor time
by sending a high priority message to the mail-queue. After that it also identi�es a pending
message from a sensor e.g. a measurement data, and aging it applies for processor time,
but this time by sending a low priority message to the mail-queue. In case of no pending
messages, the Listen process will release the processor, by sending a message to the measure
process, but in this scenario this case will not accrue.

3. The scheduler will begin to execute the highest priority message from the mail-queue, which
in this case is the message from the gateway, because of its priority. After this task is done,
the scheduler will execute the next highest priority message, which is the message from a
sensor.

5.3 Requirements Speci�cation

This chapter contains the requirement speci�cation of the system. The requirements are aimed
for the prototype of the system.

5.3.1 System Requirement

1. The system must consist of at least 4 motes and a gateway.

2. The system must be setup, in as a one-hop network.

3. The system must tolerate at least 1 erasures

5.3.2 Mote Requirement

Requirements for mote and sensor devices

1. After the on/o�ine period of 5sec. each mote must decide whether to enter online or o�ine
state.

2. The decision parameter must be uniformly distributed with a probability p for online state
and 1-p for o�ine state.

44 5.4. STATE DIAGRAM

3. Each received data payload must be maximum 27 Bytes.

4. Each mote, according to a request from the gateway, must transmit its data.

5.3.3 Sensor Requirements

Additional requirements for a sensor device

1. The sensor must collect measurements after each gateway presence.

2. Measured data must encode data using RS.

3. The encoded data must be distributed to other motes

5.3.4 Gateway

1. The gateway must announce its presence to all devices

2. The gateway must collect data from the motes

3. The gateway must decode the collected data parts into the original measurement data

5.3.5 Preconditions

1. Messages are never lost in the system. (All send packets are also received correctly)

2. The system contains a static number of devices.

3. Underlying MAC protocol is working correctly

5.4 State diagram

From the scenario di�erent requirement or rules has been found. The list can be seen here
below:

1. When a mote is distribution data it has to stay online till the distribution is done

2. The Gateway locks all online motes when it is present

3. The sensors only measure one time between each time the Gateway is present

4. When a mote has delivered the data to the Gateway it starts new measurements

5. After a mote has done a measurement, the data is encoded and distributed

5.4. STATE DIAGRAM 45

6. The session number is increased by 1 every time the Gateway is present

7. If a mote receive data from another mote with a higher session number than the data already
stored on the mote, the old data is removed and the mote starts to do new measurements

8. A mote decides to be online or o�ine independent of previous decision.

These requirements has been chosen from the idea that the �rst system should be as simple as
possible. Then it can always be moderated and expanded later in the process.

From the requirements above a state diagram has been made. This can be seen in Figure 5.5.

The initial state is the measurement/distribution state. All sensors needs to be in this state
exactly one time between each time the Gateway is present. From this state the more can
choose to be either o�ine or online, resulting in two new states. If the mote is in o�ine state
is stays there one time slot, after this time slot the same decision has to be made, either the
mote stays o�ine or it becomes online. If the mote becomes online it is listening for motes who
wants to distribute data to it or for the Gateway who wants the data which is stored on the
mote. Id the mote receive a request from another mote it is in the receive data state. If the
session number of the new data is higher than the data already sent it moves to increase session
number and after this back to the measurement/distribution state. If the session number is
the same as the saved data the mote changes to either o�ine or online state. If the mote in
online state receives a request from the Gateway it moves to the Gateway present state where
it delivers the data to the Gateway and afterwards starts measurering and distributing again.
The statediagram can be seen in Figure 5.5

Figure 5.5: Statediagram for one mote

It is important to determine which states can occur at the same time. E.g. can a mote be
o�ine while another is o�ine. Or can one mote measure and distribute while another is o�ine.

46 5.5. TIME LINE

GW Measure O�ine Online Receive Session no.++
GW + - + + - -
Measure - + + + + +
O�ine + + + + + +
Online + + + + + +
Receive - + + + - +
Session no.++ - + + + + -

Table 5.1:

The result can be seen in table 5.4

5.5 Time line

Figure 5.6: An example of events in a cluster of 5 motes an a gateway

Chapter 6

Design

6.1 Mote - Mote communication

The communication between the motes are nessesary when they need to distribute the messages
so the Gateway can get them even when some of the senors are o�ine. There are two di�erent
�owcharts, one for sending data from a mote and one for receiving the data. First the send �ow
will be described.

6.1.1 Send �ow

Figure 6.1 shows the �owchart when a mote is sending data to another mote.

The data needs to be encoded with the Reed-Solomon method and then split into packets, one
for each other mote in the system.

• The sensor measures environmental conditions: This mote start by measuring som enviro-
mental conditions which is the data that should be ditributes between the other motes.

• The measurement is encoded and split into packets: The data needs to be encoded with the
Reed-Solomon method and then split into packets, one for each other mote in the system.

• The protocol header is added to the �rst packet: The Gateway must be able to decode the
message again when it has recieved all the packets. Therefore each packets needs to have a
header which describe which message the packet is a part of and which part it is.

• The device searches for the next online device in the cluster: The mote send the data-packets
buy trying one of the other motes at the time. If the other mote is online, the packet is send,
if the mote is o�ine the mote searches for the next mote which should receive a packet.

48 6.1. MOTE - MOTE COMMUNICATION

• The packet is sent to an online device which replies with a packet telling the sensor if the
gateway session number is OK or obsolete: Because not all motes are online when the Gateway
comes, it is important to tell the ones that was o�ine the det data they have saved is no
longer important.

• If the session number is obsolete it will be increamented to the current session number and
the packet retransmitted. Otherwise the next packet will be transmitted: If the mote was not
online when the Gateway was present last, its session number will be obsoltete. Them it will
delete all old packets it has stored. It must also encrease the session number at add a new
header to the packet. If it has allready sent some packets to other motes, it must retrancmit
there packets with the new header.

Figure 6.1: Send procedure of two sensors

6.1.2 Receive �ow

Figure 6.2 shows the �owchart when a mote receives data from another.

1. The device is idle, listening for messages: All motes has some time where they are listning

6.1. MOTE - MOTE COMMUNICATION 49

for incoming request. This can be request from the Gateway or other motes which want to
distribute there messages.

2. Upon reception of a packet, the session number is checked: When the mote receives a packet
from another mote the session number must be checked. because the mote might have data
which are obsolete.

3. The session number is obsolete: If the session number is smaller than the number the motes
has stored then the send-mote is made aware of this so if can delete old data and retransmit
the new packet.

4. The session number is new: The receiver-mote must delete all data, update the session
number and store the receved packet.

5. Same session number: If the session number match the session number on the receiver-mote,
the packet is just stored.

Figure 6.2: Receive procedure between two sensors

50 6.2. GATEWAY TO MOTE COMMUNICATION

6.2 Gateway to mote communication

The communication between the Gateway and the motes is nessesary when the messages need
to be send to the Gateway. This is done with the Gateway requesting the di�erent packets from
the motes and then decode the message.

6.2.1 Gateway to mote �ow

Figure 6.3 shows the �owchart of the communication from the Gateway to a mote.

1. The gateway is entering a cluster and announces this to the cluster: All online motes needs
to be told that the Gateway wants there packets. When the Gateway has broadcastet its
present the online motes are locked and will therefor not be online til the Gateway had all
the packets.

2. A request for data is made for each mote in the cluster: When the Gateway have broadcasted
its presence it request the packets from one mote at a time.

3. When all requests are done the gateway decode the messages and leave the cluster: The
Gateway needs to request packets from all online motes so the probability that the messages
can be decoded is maximized.

Figure 6.3: This Figure shows the communication �ow of the gateway when it enters a cluster

6.3. DEFINITION OF INTERNAL TASKS 51

6.2.2 Mote to gateway �ow

Figure 6.4 shows the �owchart of the communication from the mote to the Gateway.

1. When the mote has received the announcement from the Gateway, it waits until it receive
a request for data: When the mote has received the broadcast about the Gateways present
it is locked until the Gateway has received its packets. This means that no other mote can
dirstribute to it and it can not go o�ine.

2. When the request from the gateway is received, the mote will transmit its data.

3. After transmission the data on the mote is deleted and the sequence number is incremented:
It is important that any old data is removed from the motes because the memory is limited.

Figure 6.4: The Figure shows the communication �ow of a mote when a gateway enters the cluster

6.3 De�nition of internal tasks

From those activity diagram described earlier, following task are stated:

52 6.3. DEFINITION OF INTERNAL TASKS

• Request from gateway

• Data from mote

• Collect data

• Encode data

• Distribute data

• Online/o�ine

The gateway will perform the following tasks:

• Broadcast gateway presence: When the gateway is present it will broadcast a message
to the motes announcing its presence.

• Decode data:

Those tasks are categorized so those who share the same interest are sat together in a sub task,
this is done as follows:

• Receiver

� Request from gateway

� Data from mote

• Measure

� Collect data

� Encode data

� Distribute data

• State decision

� Online

� O�ine

• Gateway

� Broadcast presence

� Decode data

6.3. DEFINITION OF INTERNAL TASKS 53

6.3.1 Functions

Meassure
Collect data
The purpose of this function is to measures environmental conditions. After the measurement,
the collect data function calls a sub function in order to store the measured text string in to
bu�er.

• Input:

• Output: Text string

• Subfunctions: Write to bu�er

• Parent fuctions:

Encode data
This function reads the measured data from the bu�er and encodes it regarding to Reed-Solomon
scheme.

• Input: Measurement data, which is a text string

• Output: The data is split into n number of text string

• Subfunctions: GF-lib

• Parent fuctions:

GF-Lib
This function is a part of the Reed-Solomon coding scheme.

• Input: Text string

• Output: n packet

• Subfunctions:

• Parent fuctions: Encode data.

Distribute data
The encoded data is distributed into n packets.

• Input: Encoded data, which is a text string.

• Output:

• Subfunctions: Add header, send packets and write to bu�er.

54 6.3. DEFINITION OF INTERNAL TASKS

• Parent fuctions:

Add header
This function adds a header to on each n text string and creates a packet.

• Input: n text string

• Output: n packets

• Subfunctions:

• Parent fuctions: Distribute data

Send packets
This function handles the packets send functionality, that is, packets are send to online motes
on the network. This is done until there are no packets left.

• Input: n packets and n mote

• Output: Boolean, where 0 for a success transmission and 1 for error

• Subfunctions:

• Parent fuctions: Distribute data

Write to bu�er
Each incoming data e.g. from: measurement, packets from motes and message from gateway is
stored in memory.

• Input: text string from measurement, packets from motes and message from gateway

• Output:

• Subfunctions:

• Parent fuctions: Distribute data

State decision
Calculate probability
This function will calculate the online probability based on the actual number of devices.

• Input: Number of motes n and number of checksums m

• Output: Probability p

• Subfunctions:

6.3. DEFINITION OF INTERNAL TASKS 55

• Parent functions:

Make decision
This fuction will make a decision whether to be on/o�ine by generating a random number and
comparing this with the probability.

• Input: Probability p

• Output: Boolean value of 0 and 1 to indicate on/o�ine decision

• Subfunctions: Go online and Go o�ine

• Parent functions:

Go onlone
This function will switch the mote's status to online for a speci�ed amount of time

• Input: Time for a period t

• Output:

• Subfunctions:

• Parent functions: Make decision

Go o�ine
This function will switch the mote's status to o�ine for a speci�ed amount of time

• Input: Time for a period t

• Output:

• Subfunctions:

• Parent functions: Make decision

Receive
Read input
This function will read the input and write it to an incoming bu�er

• Input:

• Output:

• Subfunctions: Process input

• Parent fuctions:

56 6.3. DEFINITION OF INTERNAL TASKS

Process input
This function will process the input based on the sender address in the MAC header of the
packet

• Input: Received input header

• Output: Boolean to indicate whether the input was from a mote or the gateway

• Subfunctions: Write to bu�er

• Parent fuctions: Read input

Write to bu�er
This function will store the packet in the bu�er if it was received from a mote

• Input: Received packet

• Output:

• Subfunctions:

• Parent fuctions: Process input

Gateway
Broadcast request
This function will broadcast a speci�ed number of requests to the motes in the network. The
online motes will respond on this request.

• Input: Number of times the request should be made

• Output: Addresses of online motes

• Subfunctions: Request data

• Parent fuctions:

Request data
This function will request a mode bu it's address to send the packet it contains.

• Input: Adress of mote

• Output: Packet

• Subfunctions: Write to bu�er

• Parent fuctions: Broadcast request

6.4. NETWORK INTERFACES 57

Write to bu�er
This function will store incoming packets in a bu�er.

• Input: Received packet

• Output:

• Subfunctions:

• Parent fuctions: Request data

Decode data
This function will decode the message if enough packets exist in the bu�er

• Input: Packets from bu�er

• Output: Text string

• Subfunctions: GFLib

• Parent fuctions:

6.4 Network interfaces

When a mote have packets to distribute it will try to contact the other motes one by one. This
is done by sending a request to a mote asking for the status, if the receiving mote is online it
will respond by sending an alive packet otherwise the sending mote will get a timeout and try
the next mote. When the sending mote receives the alive packet it will send a payload packet,
which the receiver will respond by sending an acknowledgement. An illustration of this can be
seen in Figure 6.5.

Figure 6.5: The Figure shows the communication �ow between two motes

When the gateway appears it will request status of the motes and those that are online will
respond by sending an alive packet. Then the gateway will request for packets from the �rst

58 6.5. HEADER DESIGN

online mote and the mote will send a packet which must be acknowledged by the gateway.
When the last packet is sent the gateway will send a done packet and start requesting packets
from the next online mote. This can be seen in Figure 6.6.

Figure 6.6: This Figure shows the communication�ow between the gateway and a mote

6.5 Header design

The MAC header from [1] will be used to provide control on the MAC layer. The two reserved
bits in the MAC header will be used for session number indicating the meassage number from
0-4.

The payload header will be 2 bytes where:

5 bits are used to indicate whether a packet is data or checksum and its number. The �rst bit
will be 0 if data and 1 if checksum. The rest 4 bits will provide a umber between 1 and 16. An
example of this is data packet 2 as 00010.

The next 5 bits will be used to provide information about the number of data packets which
can be between 1-32. The same amount of bits will be used to show the number of checksum
packets also between 1-32.

The last bit is reserved for future purposes.

27 bytes is left for payload.

The header can be seen in Figure 6.7.

6.5. HEADER DESIGN 59

Figure 6.7: The Figure shows the payload header

Chapter 7

Test

7.1 Simulation test

To varify the probabilistic system model in Section 4.2, a simulation of the network has been
implemented in Java. This Java application is design to simulate the entire system with both
motes and gateway. Each mote and the gateway is implemented as a seperate thread which
allows each each device to operate independently. It is possible to change the following param-
eters:

• Total number of motes

• Number of checksum motes

• Online probability

• Period time for the mote

The simulation is designed to be scalable and support an arbitrary number of motes. To ensure
a correct and realistic simulation it is necessary that the motes are independent regarding state
shift. This means that each mote runs in a separate thread, which means the simulation can
run with up to approximately 50 motes depending on computation power. Also the gateway
must be independent of the motes thus it is also a thread. Each mote must be able to distribute
to all other motes and stay online until the distribution is complete. This means that when a
mote is asked to receive it must also be able to inform the distributing mote about the present
online/o�ine state. Furthermore each mote must be able to decide upon the online/o�ine state
independently from the previous state according to the online probability. The gateway must
be able to request data from each mote and calculate if enough motes are online for the message
to be reconstructed. A screenshot of this visualization is shown in Figure 7.1

7.1. SIMULATION TEST 61

Figure 7.1: Screen shot of the simulation application in case of 48 motes. The black circles are
o�ine motes and the grey are online motes

For data processing the gateway thread creates an output for each appearance saying how many
motes is o�ine at this time instance, and if the reconstruction of messages was successful or
not. The output can be seen in Listing 7.1

Listing 7.1: Output from the gateway thread in case of RS(3,1) and online probability 0.5

0 2 % Ses s i on 1 Success ! 2 was on l i n e
1 1 % Ses s i on 2 Fa i l u r e ! 1 was on l i n e
1 0 % Ses s i on 3 Fa i l u r e ! 0 was on l i n e
0 2 % Ses s i on 4 Success ! 2 was on l i n e
1 0 % Ses s i on 5 Fa i l u r e ! 0 was on l i n e
1 0 % Ses s i on 6 Fa i l u r e ! 0 was on l i n e
0 3 % Ses s i on 7 Success ! 3 was on l i n e
1 1 % Ses s i on 8 Fa i l u r e ! 1 was on l i n e
0 2 % Ses s i on 9 Success ! 2 was on l i n e

7.1.1 Test cases

The simulation is testing the part of the system model regarding probability for reconstruction
of the messages given a successful distribution:

pr =
n∑

k=n−m

(
n

k

)
pk

on(1− pon)n−k

Each of the following cases has been tested with pon = {0.5, 0.7, 0.8, 0.9} and 1000 samples:

62 7.1. SIMULATION TEST

• RS(3,1)

• RS(3,2)

• RS(21,7)

• RS(21,14)

• RS(48,16)

• RS(48,32)

Figure 7.2 to 7.7 show the results of the tests. The line is the system model and the circles
are the test results. The �gures shows that the probabilistic model is correct becasue the test
results are very close to the teoretical model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 7.2: Graph showing the model (solid line) and test results (circles) for RS(3,1)

7.1. SIMULATION TEST 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 7.3: Graph showing the model (solid line) and test results (circles) for RS(3,2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 7.4: Graph showing the model (solid line) and test results (circles) for RS(21,7)

64 7.1. SIMULATION TEST

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
ba

bi
lit

y
th

at
 m

es
sa

ge
 is

 r
ec

on
tr

uc
te

d
(p

r)

Online probability (p
on

)

Figure 7.5: Graph showing the model (solid line) and test results (circles) for RS(21,14)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 7.6: Graph showing the model (solid line) and test results (circles) for RS(48,16)

7.2. TEST OF PROTOTYPE 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

Figure 7.7: Graph showing the model (solid line) and test results (circles) for RS(48,32)

7.2 Test of prototype

In order to test the designed distributed model, a prototype has been implemented using sensor
boards. The sensor board prototype consist of 3 motes and a gateway, where each mote is
implemented such they follows the routine described in Section 4.1.

Test purpose
The Purpose of the test is to show the probability of recovering the messages, using the Xor
scheme with one checksum bit, on the gateway.

The prototype will be tested in three cases (50%, 80% and 90% online probability) where:

• Period time of the motes is 5 seconds

• Gateway will be present each 15 seconds and will be present 200 times

• The test time is 50 minutes (15 seconds * 200)

• The online probability of each mote is 50% in case 1, 80% in case 2 and 90% in case 3

Each mote and the gateway is during the test generating a log �le, the motes log each time they
enters a new state and the gateway logs whether the recovery attempt is a success or failure.
The generated log �les are then analyzed in MATLAB by generating a stair diagram to show
which states the motes enters during the test. The following shows those states:

66 7.2. TEST OF PROTOTYPE

Online probability [%] Reliability [%]
50 42,5
80 60,5
90 79,5

Table 7.1: The results from the prototype tests

• State 1: Measure

• State 2: Gateway presence

• State 3: Not implemented (Message from motes)

• State 4: Decision (online/o�ine)

• State 5: Distribute data

• State 6: Online states

• State 7: O�ine states

The results generated from the log �le of the gateway can be seen on table 7.6.

Expectations
It is expected that the probability of recovering the messages is lower than the theoretically
calculated values due to external factors as the MAC protocol, the physical medium due to
noise and disturbance etc.

7.2.1 Results

Stair case diagram

Table 7.2 shows how frequent a single mote is on a state during 50 min test duration, for each
test case.

Test 50%

• 1xPeriod: 5sec.

• Gateway presence: Once per 15 sec.

The following diagram is plotted by taking some samples from the log �le, in order to see
diagram over 200 samples see Appendix A. The log �les for each mote in those 3 cases can be
found on the included CD.

7.2. TEST OF PROTOTYPE 67

Online probability [50%]
Mote 1 Mote 2 Mote 3

Measure 103 114 102
Message from GW 102 113 101
Decision 708 721 756
Distribution 445 455 481
Online 334 356 384
O�ine 374 356 372
Samples (50min) 4133 4213 4393

Table 7.2: Results from 50% online probability test. From this it can be seen that each mote is
online approximately 50% as it meant to be.

200 205 210 215 220 225 230 235 240 245 250
0

1

2

3

4

5

6

7

Number of samples

S
at

e

Mote 2

Figure 7.8: The �gure shows state routine of mote 2. Each sample on the x-axes indicates a state
chance and y-axes shows which state it is on. From this �gure it can be seen that the gateway have
appeared 3 times which is approximately 45 sec of the 50 min test.

Test 80%

• 1xPeriod: 5sec.

• Gateway presence: Once per 15 sec.

68 7.2. TEST OF PROTOTYPE

Online probability [80%]
Mote 1 Mote 2 Mote 3

Measure 148 166 160
Message from GW 148 166 160
Decision 889 1098 870
Distribution 915 1474 897
Online 702 904 697
O�ine 187 194 173
Samples (50min) 5979 8005 5915

Table 7.3: Results from 80% online probability test.

200 205 210 215 220 225 230 235 240 245 250
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 2

Figure 7.9: The �gure shows state routine of mote 2.

Test 90%

• 1xPeriod: 5sec.

• Gateway presence: Once per 15 sec.

7.3. TEST CONCLUSION 69

Online probability [90%]
Mote 1 Mote 2 Mote 3

Measure 177 187 181
Message from GW 176 183 181
Decision 1370 1607 859
Distribution 2246 2975 707
Online 1229 1439 758
O�ine 141 168 101
Samples (50min) 10679 13119 5575

Table 7.4: Results from 90% online probability test.

200 205 210 215 220 225 230 235 240 245 250
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 2

Figure 7.10: The �gure shows state routine of mote 2.

The Figures above shows that the listed states are entered as well as the measurement and
distribution phase which is described in Section 4.1. The stair case diagrams for each test case
can be seen in Appendix A.

7.3 Test conclusion

The simulation and prototype have been tested. The simulation is used as an optimal imple-
mentation of the model where it is possible to have many samples where the MAC protocol is
considered to be error proof. These tests can therefore be used to verify the probabilistic model.
The tests from the prototype are used to decide how well the model re�ects a real life scenario.

70 7.3. TEST CONCLUSION

pon

RS (3,1) (3,2) (21,7) (21,14) (48,16) (48,32)

0.5 0.494 0.859 0.107 0.972 0.013 0.993
0.7 0.774 0.97 0.775 1 0.738 1
0.8 0.903 0.993 0.948 1 0.992 1
0.9 0.969 1 0.999 1 1 1

Table 7.5: The results from the simulation tests showing the reliability at four di�erent online
probabilities for six RS schemes.

One sample in these tests is de�ned as the result from the gateway in one cycle. In Fig. 4.1
one cycle is shown. The result from the gateway is an answer of whether the reconstruction of
the message was possible or not.

It is assumed that each mote in the network successfully have distributed their messages before
the gateway arrives.

7.3.1 Simulation

Each of the following cases has been tested with online probability = {0.5, 0.7, 0.8, 0.9} :

• RS(3,1)

• RS(3,2)

• RS(21,7)

• RS(21,14)

• RS(48,16)

• RS(48,32)

In each case 1000 samples are collected.

The conducted results can be seen in Table 7.5.

7.3.2 Prototype

Three di�erent test cases with distinct online probabilities: 0.5, 0.8 and 0.9 are tested. In each
test case 200 samples are collected. Because only 4 devices are available the test case will be
the RS(3,1).

The conducted results from these cases showed that for an online probability of 0.5, the gateway
was able to reconstruct 85 times out of 200 runs that is a 42.5% reliability, and for 0.8 online

7.3. TEST CONCLUSION 71

Online probability Reliability [%]
0.50 42.5
0.80 60.5
0.90 79.5

Table 7.6: The results from the prototype tests showing the reliability at three di�erent online
probabilities

Online Probabilistic Simulation [%] Prototype [%]
probability model [%]

0.50 50 49.4 42.5
0.80 90 90.3 60.5
0.90 97.5 96.9 79.5

Table 7.7: The results from the tests, where the reliability for probabilistic model, simulation and
prototype is given for three distinct online probabilities.

probability gave 60.5% reliability and �nally a reliability of 79.5% for a online probability of
0.9. The result from this test can be seen in Table 7.6.

7.3.3 Result conclusion

The results from the simulation and the prototype has been compared with the probabilistic
model. Only the test case with RS(3,1) was done for both tests, therefore these are the test
results which will be compared. The results can be seen in Table 7.7.

The results from Table 7.7 is shown in the graph on Fig. 7.11. From this graph it is clear that
the simulation test veri�es the probabilistic model and the results from the prototype test is
lower. The dashed line on the graph is the model where there is non-cooperative and it can be
seen that the probabilistic model performs better than the non-cooperative method.

72 7.3. TEST CONCLUSION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

RS(3,1)
RS(21,7)
RS(48,16)
RS(3,0)
RS(21,0)
RS(48,0)

Figure 7.11: The system reliability as a function of online probability for Reed-Solomon coding with
two data devices and one redundancy device in comparison to no distribution

Chapter 8

Conclusion

The objective of this project was to propose a reliable solution that enables distribution of
data to a gateway in a partially wireless connected sensor network, in comparison to a non-
cooperative system where no distribution is performed. To ful�ll this, the Reed-Solomon coding
scheme has been selected to enable the gateway to recover data with a high reliability.

A probabilistic system model has been derived to �nd a relation between the online probability
of each mote and the reliability of the system. This system model has been validated through
a simulation and a prototype has been developed to test the model in a real life scenario.
The result shows that the proposed solution has an enhanced performance compared to the
non-cooperative case.

8.1 Discussion

The results of the tests have shown that the methods have proven to be suitable for the chosen
scenario. The results can be seen in Figure 7.11. The results from the simulation veri�es the
probabilistic system model and matches the results, there is only a small deviation (±0.6%).
This deviation is most likely due to the random number generator in a PC which is not truly
random, but only pseudo random [2]. The results from the prototype test shows a deviation
from the system model and simulation, which must be considered acceptable since the prototype
is just a real life proof of the model. The deviation is mainly due to a MAC protocol not suited
for the scenario and a shared wireless medium. Even though collision avoidance mechanisms
are implemented, it still needs �ne tuning.

Figure 7.11 and 8.1 shows that using the cooperative method using Reed-Solomon is better
than the non-cooperative case. For example in Reed-Solomon a reliability at 50 % can be
guaranteed with only 0.50 online probability where no distribution needs an online probability
at approximately 0.80 to ensure the same reliability. A online probability in both methods at

74 8.2. FUTURE PERSPECTIVES

0.70 gives a reliability in Reed-Solomon at 78.5 % and in no distribution at 35 %.

From Fig. 8.1 it can, as well, be seen that the system reliability is higher than the online prob-
ability of each mote, for large online probability. Furthermore it is seen that the Reed-Solomon
coding scheme is able to maintain the same level of reliability, when the online probability is
decreased and the number of motes in the system is increased.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

th
at

 m
es

sa
ge

 is
 r

ec
on

tr
uc

te
d

(p
r)

Online probability (p
on

)

RS(3,1)
RS(21,7)
RS(48,16)
RS(3,0)
RS(21,0)
RS(48,0)

Figure 8.1: Each solid line represents Reed-Solomon coding with a ratio of 3:1. RS(3,1) as an
example shows Reed-Solomon coding with three devices, where one acts as redundancy device. The
corresponding dashed lines show no distribution (ND) models.

8.2 Future perspectives

The models proposed in this paper are static in the sense of the distribution phase, because all
motes need to be online before the distribution can �nish. In this section ideas to improve the
model are proposed to make the model act dynamical in the distribution phase.

Distribution model
As stated earlier in this paper, the distribution is performed to all motes in the cluster. This
results in extended online periods for each mote because it must wait for all motes to become
online. For a small and prede�ned system this approach is suitable, but for a large and uncon-
trollable system it might take a long time to distribute if it is possible at all because a failure
in one mote can result in a single point of failure. Instead of having such a static system where
each mote is dependent on the other motes to be able to distribute its data a more dynamical
approach could be introduced.

Search for available motes before distribution
Instead of waiting for motes to become online the distributing mote can perform a neighbor

8.2. FUTURE PERSPECTIVES 75

discovery to search for available motes and then distribute to those who are available. This will
ensure that the distribution is performed much faster than by waiting for others to be online, but
on the other hand the number of motes who will have a part of the message will not be as high
as in the static approach. For a large scale network it can be assumed that a high percentage
related to the online probability will have a part of the message. The implementation will also
be better for a scalable network because the motes do not need to know how many neighbors
it has in the cluster.

Multi hop distribution
The proposed model in this project is distributing the packets by making one-hop connections
in the network. Another approach of distributing the packets could be to introduce multi-hop
connections to let other motes in the system route the packets to their destination e.g. by using
the epidemic algorithm [3]. By doing this, motes not in range of each other might still be able
to communicate because some motes in between them can be used to convey the packets.

Poisson distribution
The binomial distribution is used to calculate the probabilistic model but it is limited to small
n and m due to computation precision. If the model should show how the reliability is for high
m and n the Poisson distribution must be used.

Bibliography

[1] Anders Grauballe and Mikkel Gade Jensen. Mac protocol for wireless sensor networks.
University project report, 2007.

[2] Mads Haahr. Introduction to Randomness and Random Numbers. http://www.random.
org/randomness/, 2007.

[3] Tom Daniel Hollerung. Epidemic Algorithm. http://wwwcs.uni-paderborn.de/cs/
ag-madh/WWW/Teaching/2004SS/AlgInternet, 2004.

[4] Robert H. MarelosZaragoza. Art of Error Correction Coding. John Wiley and Sons Inc.,
2th edition, 2006. ISBN: 0-470-01558-2.

[5] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems.
Software � Practice & Experience, 27(9):995�1012, September 1997.

[6] J. S. Plank. Erasure codes for storage applications. Tutorial Slides, presented at FAST-
2005: 4th Usenix Conference on File and Storage Technologies, http://www.cs.utk.edu/
~plank/plank/papers/FAST-2005.html, 2005.

[7] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers and Scientists.
Elsevier Academic Press, third edition, 2004. ISBN: 0-12-598057-4.

[8] Andrew S. Tanenbaum. Structured Computer Organization. Pearson Prentice Hall, 5th
edition, 2006. ISBN: 0-13-148521-0.

http://www.random.org/randomness/�
http://www.random.org/randomness/�
http://wwwcs.uni-paderborn.de/cs/ag-madh/WWW/Teaching/2004SS/AlgInternet�
http://wwwcs.uni-paderborn.de/cs/ag-madh/WWW/Teaching/2004SS/AlgInternet�
http://www.cs.utk.edu/~plank/plank/papers/FAST-2005.html�
http://www.cs.utk.edu/~plank/plank/papers/FAST-2005.html�

Appendix A

Results

A.0.1 Prototype test 50% online

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples.

S
ta

te

Mote 1

Figure A.1: The �gure shows state routine of mote 1.

78

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
at

e

Mote 2

Figure A.2: The �gure shows state routine of mote 2.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 2

Figure A.3: The �gure shows state routine of mote 3.

A.0.2 Prototype test 80% online

79

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 1

Figure A.4: The �gure shows state routine of mote 1.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 2

Figure A.5: The �gure shows state routine of mote 2.

80

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

S
ta

te

Mote 3

Figure A.6: The �gure shows state routine of mote 3.

A.0.3 Prototype test 90% online

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 1

Figure A.7: The �gure shows state routine of mote 1.

81

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 3

Figure A.8: The �gure shows state routine of mote 2.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of samples

S
ta

te

Mote 3

Figure A.9: The �gure shows state routine of mote 3.

Appendix B

MAC Protocol

When working with, in particular wireless networks it is important to have a working MAC
protocol. This project has its focus on the application layer, and must rely on an existing MAC
protocol. Implementing the project prototype design in a simulated environment does not raise
any critical requirements for a MAC protocol as the environment is controlled and no channel
error can occur. The physical sensor platform of this project does already have an existing
MAC protocol implemented as the result of a 6th semester project at AAU[1].

This MAC protocol has been developed to support a multihop connection in a line topology
network. It features carrier sensing (CSMA), a dynamic medium reservation scheme (RTS and
CTS) known from IEEE 802.11, acknowledgment (ACK) and a one bit sequence number to
prevent packet duplicates. The total packet size of the platform is 32 bytes, 3 bytes is used
for MAC header which leaves 29 bytes for payload and higher layer protocols. The packet
including MAC header bits can be seen in Figure B.1. Notice the two reserved bits for adding
extra features like broadcast (i.e. no ACK reply from receivers) which can be usefull in this
project. The �eld Packet Type of 4 bits is also not fully used as only 4 types is currently
supported: RTS, CTS, Payload and ACK. [1]

83

Payload

3 bytes 29 bytes

MAC Header

Seq.
No.

Bits:

Sender
address

Receiver
address

Packet
Type

8 1

Buffer
status

8 4 1

Reserved

2

Figure B.1: The �gure shows a packet with the MAC header added. 2 bits are reserved for modi�-
cation and add-ons.[1]

A communication diagram of the reservation scheme can be seen in Figure B.2. The packets
RTS, CTS and ACK are all 3 bytes long and a payload packet (Pck) is 32 bytes in total.

RTS

CTS

Pck

ACK

Figure B.2: Communication �ow between two motes in the network [1]

