
MAC Protocol
for Wireless Sensor Networks

Group 652
Giuseppe Calí, Ileana Ghizd vescu, Anders Grauballe, Mikkel Gade Jensen, Fabio Pozzo

Supervisors: Tatiana Kozlova Madsen, Frank H.P. Fitzek

6th Semester
Spring 2007

Institute for electronic systems
Communication systems

Department of Electronic Systems

Communication Systems

Fredrik Bajers Vej 7C

Telephone +45 96 35 87 00

Fax +45 98 15 17 39

http://www.kom.aau.dk

Title:
MAC protocol for wireless sensor
networks

Theme:
Robust communication

Project period:
6th semester,
February - May 2007

Project group:
Communication Systems, group 652

Participants:
Giuseppe Calí
Ileana Ghizd vescu
Anders Grauballe
Mikkel Gade Jensen
Fabio Pozzo

Supervisors:
Tatiana Kozlova Madsen
Frank Fitzek

Number of prints: 7

Number of pages: 95

Number of appendixes and character:
1 pcs. CD-ROM

Finished: May 30th, 2007

Synopsis:

Wireless sensor networks consist of spatially
distributed autonomous small devices, often
called "motes", which cooperatively monitor,
collect and exchange data from the surround-
ing environment.
Aalborg University has developed a mote
which integrates a Bluetooth module and a
low cost Industrial, Scienti�c and Medical
(ISM) band module which makes possible to
establish a multi-hop connection between the
motes.
The purpose of this project is to design and
implement a Medium Access Control (MAC)
protocol for the ISM module of the mote plat-
form, proving a solution to avoid collisions be-
tween packets during transmission. A colli-
sion avoidance scheme with acknowledgements
and carrier sensing has been designed and im-
plemented to minimize data loss and duplica-
tion. This is also known as Request-To-Send
(RTS) / Clear-To-Send (CTS) medium reser-
vation mechanism.
To test the implementation of this protocol, a
mobile phone application is developed which
allows a user to exchange text, image and au-
dio �les through the mote network.
The acceptance test concludes that the imple-
mentation is robust and works as stated in
the requirements speci�cation except for one
requirement regarding maximum transmission
range. This is however due to the antenna cal-
ibration and is not software related.

The written material in the report is public available.

Preface

This project has been carried out by project group 652, Communication Systems on 6th semester
at Aalborg University, spring 2007. The focus group for this report is people with an interest in
wireless sensor networks, MAC protocols, mobile development and the idea of communication
between sensors and mobile phones.

In this report �gures, pictures and tables are labeled with chapter and �gure number for easy
reference, e.g. 4.2 for second �gure in chapter 4. References for literature are shown as e.g.
[10].

A CD is attached to the back cover of the report containing the following:

• The report in PDF format.

• The source code for the programs in C and Python.

There are several people we would like to thank for their involvement and for helping us com-
pleting this project. Therefore, we would like to express our gratitude to our supervisors Tatiana
Kozlova Madsen and Frank F. Fitzek who have guided us in our work. Their advice, idea and
support, throughout the project has been very helpful. The same holds true for Ben Krøyer
who designed and built the sensors. Furthermore, we are thankful to Stephan Rein and Daniel
Gühne from TU Berlin for code examples and programming support. Finally, our thanks go to
Gian Paolo Perrucci, for the Python programming support.

5

Giuseppe Calí Ileana Ghizd vescu

Anders Grauballe Mikkel Gade Jensen

Fabio Pozzo

Contents

1 Introduction 8
1.1 First AAU mote . 10

1.2 Second AAU mote . 11

1.3 Initial problem . 14

2 Analysis 15
2.1 The data link layer . 15

2.2 Multiple Access Protocols . 17

2.3 Multiple access in wireless networks . 22

2.4 Other sensor network issues . 28

2.5 Problem statement . 29

3 Requirements speci�cation 30
3.1 Preconditions . 30

3.2 System requirements . 30

3.3 Mote and protocol requirements . 31

3.4 Mobile phone application requirements . 31

4 System design 33
4.1 Network scenario . 33

4.2 Network interfaces . 36

5 Mote protocol design 41
5.1 Program design . 41

5.2 UART/BT module . 46

CONTENTS 7

5.3 Timer module . 48

5.4 Packet handling module . 50

5.5 SPI/nRF module . 51

6 Mobile application design 54
6.1 General description . 54

6.2 Sender . 56

6.3 Receiver . 58

6.4 Graphical user interface . 59

6.5 Modules . 61

7 Implementation 63
7.1 Mote protocol . 63

7.2 Mobile phone application . 67

8 Test 69
8.1 Test of the mobile phone application . 69

8.2 Test of the collision avoidance scheme . 69

8.3 Acceptance test . 70

9 Conclusion 73

10 Future perspectives 75

Bibliography 77

A Acceptance test speci�cation 79

B nRF ShockBurst �ow charts 86

C Bluetooth send/receive switching test 88

D Mobile phone application test 90

E Transmission range test 92

F Motes hardware schematics 93

Chapter 1

Introduction

The demand for gaining information about the surrounding environment is growing and through-
out the last decades devices has been invented for this purpose. One of the new topics in this
research area is wireless sensor networks that can provide this information in a fast and easy
way. Wireless sensor networks consists of several small devices referred to as motes that in
a cooperative way can collect and exchange information from the surrounding environment.
They can be used to monitor e.g. temperature, pressure, motion etc. or they can be utilized to
create a small wireless communication network. Wireless sensor networks bene�ts from other
traditional networks in price and size. A qualitative comparison of wireless sensor networks,
wireless ad-hoc networks and wired Networks can be seen in Table 1.1. The table can help
deciding which kind of network to deploy in a given scenario.

9

Characteristic Wireless Sensor
Networks

Wireless Adhoc
networks

Wired Networks

Transmission range Short(3 to 30 m) Comparatively
longer(10 to 500 m)

Large(Up to 1 km)

Processing Power
and Memory

Limited processing
and memory capac-
ity

Higher processing
power memory

Highest available
processing power
and memory

Cost of nodes Inexpensive Relatively expen-
sive nodes

Variable but ex-
pensive compared
to wireless sensor
nodes

Power supply Nonrechargeable Ir-
replaceable

Rechargeable
and/or replaceable
batteries

Power outlets

Data rate Low; 1-100 kb/s High 54 Mbps Highest 10-100
Mbps

Direction of �ows Predominantly
unidirectional-
sensor nodes to
sink

Bidirectional end-
to-end �ows

Bidirectional end-
to-end �ows

Addressing No globally unique
ID

Globally unique ID Globally unique ID

Table 1.1: Comparison between Wireless Sensor Networks, Wireless Ad-hoc networks and Wired
Networks [1].

Figure 1.1 shows a possible setup of motes that are monitoring an event. In this example
a mote is measuring a temperature and relaying this information to a gateway via a multi-
hop connection through other motes. The gateway could be a mobile phone that is sending a
message via e.g. SMS if it is triggered by the mote indicating that the temperature has risen
to or above a certain level.

10 1.1. FIRST AAU MOTE

Figure 1.1: The �gure shows a possible setup of motes for an application. A mote (red square)
measures the environment and relays the result through the network to a gateway (mobile phone)
for viewing or further forwarding.

Other possible applications for a wireless sensor network are brie�y described in the following:

Smoke detection is of great importance in various environments including private homes.
Such systems of cooperating smoke detectors already exist. When a possible �re is de-
tected by one sensor it can alert the others setting o� the alarm in every one, or the
message can be conveyed through the network to a main control station.

Temporary setups of communication or security systems can be a simple solution in situa-
tions of urban warfare or natural disasters. Such events often result in broken cellular
networks or potential risk for aid workers. Wireless sensor networks is fast and easy to
deploy for these purposes

Parking of a car in a small space or driving reverse with accuracy can be improved by at-
taching ultra sonic distance sensors to the car. By continuous measurements transmitted
to a receiver (mobile phone) the driver is able to move the car closer to other cars or
objects. This could be a cheap alternative to installing parking cameras in the car.

1.1 First AAU mote

Motes are in theory very cheap but the �rst prototypes are having a price of approximately
100 US dollars. Aalborg University have developed its �rst prototype of such a mote which
can measure distances by an ultra sonic ranger and broadcast this measurement via Bluetooth.
This mote can be seen in Figure 1.2. The goal for AAU is to develop generic motes capable of
adapting to a wide set of applications.

1.2. SECOND AAU MOTE 11

Figure 1.2: The �gure is showing the distance sensor mote developed by Aalborg University

Each mote contains a microprocessor, communication module, sensor module and power supply.
All of this is contained in a box typically about the same size as a mobile phone.

The �rst motes developed at Aalborg university does only support communication via Blue-
tooth. The Bluetooth module is the most costly part of this mote, therefore it would be ideal
also to integrate a low cost ISM band (industrial, medical and scienti�c) 433 MHz transceiver
module. The Bluetooth implementation of the mote does only support a one-hop connection
so the idea is to implement the ISM band module so the motes are able to make multi-hop
connections as it is seen in Figure 1.1.

1.2 Second AAU mote

A new mote is being developed at Aalborg University and can be seen in Figure 1.3. As seen
the mote consists of two di�erent boards stacked on each other which gives the �exibility of
adding more features in a later design. This new mote is the one being used in this project
and the current one has the features described in the following subsections. See Appendix F
for further information about hardware schematics.

12 1.2. SECOND AAU MOTE

Figure 1.3: The �gure is showing the second version of the mote developed by Aalborg University

1.2.1 Main board

• Li-Poly battery interface which can be used for power supply to the mote

• Mini USB interface which can be used for both serial RS-232 interface to the mote and
external power supply. It is also possible to charge the Li-Poly battery by changing the
jumper settings on the board.

• dsPIC microprocessor for controlling the mote (further described in Section 1.2.3)

• 22.1 MHz oscillator as external clock source for the dsPIC

• ICD 2 debugger/programmer interface

1.2.2 Wireless board

• Bluetooth module (AmberWireless AMB2300) for wireless communication with mobile phones
or PCs, connected with serial RS-232 connection to the microprocessor

• RF transceiver for communicating via the ISM band. (Further described in Section 1.2.4).

• Loop antenna for the RF transceiver

1.2. SECOND AAU MOTE 13

1.2.3 Microprocessor

The mote is controlled by a microprocessor from Microchip with the product name
dsPIC33FJ256GP710 referred to as dsPIC, which is a 16-bit Digital Signal Controller (DSC)
based on the modi�ed Harvard architecture. It has the following relevant features that can be
utilized in this project:

• 256 KB Flash memory

• 30 KB RAM

• 85 programmable digital I/O pins, 100 pins in total

• Two (Universal Asynchronous Receiver Transmitter) UARTs

• Two (Serial Peripheral Interface) SPIs

• Nine 16-bit timers

• C compiler optimized instruction set, 83 instructions

[3]

One UART is used for RS-232 serial communication and is connected to the USB interface.
The second is connected to the Bluetooth module.

1.2.4 RF transceiver

To communicate in the unlicensed ISM band the RF transceiver (Nordic Semiconductor nRF905)
referred to as nRF, is connected to SPI1 on the microprocessor. The nRF has the following
speci�cations which are useful in this project:

• Gaussian Frequency Shift Keying (GFSK) modulation, Manchester encoded

• 32 pins

• 8 SPI instructions for con�guration

• Maximum transmit output power of 10 dBm (can be varied)

• Transmitted data rate 100 kb/s

• Can be used in the ISM bands 433, 868, or 915 MHz

• Carrier detection mechanism for "listen before talk" protocols

• Data Ready signal when a package is transmitted or received

14 1.3. INITIAL PROBLEM

• Address Match for incoming data detection

• Automatic retransmission

• Automatic Cyclic Redundancy Check (CRC) generation

[8]

The nRF also contains �ve interval registers which is status, RF con�guration, TX address,
TX payload and RX payload. The TX address register has a length of four bytes which means
that addressing of receivers should be done with one to four byte addresses. The address of
transceiver itself is contained in the con�guration register also four bytes wide. The payload
registers is 32 bytes each which also determines the maximum package size.

1.3 Initial problem

The hardware of the motes is being produced and assembled in parallel with this project by
other people at Aalborg University meaning that no hardware will be developed in this project.
The current motes does not have any sensing capabilities yet and this project will not aim for
a speci�c measuring application.

As the motes are brand new, no protocols have been developed or implemented for them. Thus
the aim of this project is the development and implementation of a Medium Access Control
(MAC) protocol for the ISM band module which makes it possible to establish direct and
multi-hop connections between the motes.

Chapter 2

Analysis

This chapter concerns issues to be considered when developing and working with wireless net-
works. When designing a protocol it is essential to be aware of which layers in network com-
munication the protocol deals with. This project is working with the mechanisms of the data
link layer which will be described here including classi�cation and examples of di�erent Mul-
tiple Access Protocols. The possible problems of wireless networks compared to regular wired
networks will be investigated and the proposed mechanisms to solve them will be described.
Energy consumption and real time aspects will brie�y be discussed as it is also important in
wireless sensor networks. This analysis of wireless scenarios will lead to the choice of which
type of MAC protocol to design and implement for the second version of the AAU mote.

2.1 The data link layer

The data link layer is the second layer in the OSI reference model for network communication
and is often referred to as layer two. It has interfaces to the physical layer and the network
layer, 1 and 3 respectively. The layers of the OSI model and the location of the data link layer
are shown in Figure 2.1.

16 2.1. THE DATA LINK LAYER

Application

Presentation

Session

Transport

Network

Data link

Physical

Host A

Application

Presentation

Session

Transport

Network

Data link

Physical

Host B

1

2

3

4

5

6

7

Network

Data link

Physical

Network

Data link

Physical

Router Router

Communication subnet boundary

Figure 2.1: The OSI reference model. The data link layer is layer 2 in the reference model and it
deals with node-to-node rather than end-to-end communication [10].

The job of the data link layer is to provide an error free communication line to the network
layer above. This is done at the sender by dividing the raw bit stream into data frames which
are sent sequentially to the receiver over a wire-like channel, i.e. a channel that acts like a
wire like a cable or a point-to-point wireless link. If the frame is received correctly, the receiver
will send an acknowledgement frame back to the sender to inform him about it. The data link
layer should also perform �ow control of the transmission to prevent slow receivers from getting
bu�er over�ow and thereby loosing data frames. This can be done by using feed back messages
from the receiver allowing the sender to continue or slow down the transmission.

As shown in Figure 2.1, data link layer protocols are operating between each machine in a
network, i.e. routers or hosts which are interconnected. This is unlike layers 4-7 which features
protocols dealing with end-to-end connections making the network and the machines within,
transparent.

The MAC layer is a sublayer of the data link layer i.e. it is not represented in the OSI model.
This layer is used in networks where multiple machines need to communicate via a single
communication channel. The protocols of the layer are called Multiple Access Protocols (MAP)
and deals with the task of scheduling and determining which machine or node should have access
to the channel next [10].

2.2. MULTIPLE ACCESS PROTOCOLS 17

2.2 Multiple Access Protocols

Starting in 1970 with the Aloha protocol, many algorithms for allocating a multiple access
channel have been developed. This section will consider a classi�cation of MAPs and use the
Aloha protocol as an example of a simple way to share the used channel. Also carrier sensing
is examined as a way of avoiding two nodes transmitting at the same time creating a collision.
[5]

2.2.1 Classi�cation of Multiple Access Protocols

At the highest level of the classi�cation there are con�ict-free and contention protocols. The
classi�cation of MAPs is shown in Figure 2.2. [6] Section 1.1.: PR

O
T

O
C

O
L

 C
L

A
SSIFIC

A
T

IO
N

3

Dynamic Resolution

Multiple Access
Protocols

Contention Conflict Free

Static Resolution Dynamic Allocation Static Allocation

Time of
Arrival

Proba-
bilistic ID

Proba-
bilistic

Reser-
vation

Token
Passing

Time
and
Freq

Freq.
Based

Time
Based

FIGURE 1.1: Classification of Multiple Access Protocols

Figure 2.2: Classi�cation of Multiple Access Protocols [6]

Con�ict free protocols are those scheduling the transmissions of all users [5]. In this way, by
adjusting each user's transmitting time or frequency, it avoids that two or more users transmit
simultaneously.

Con�ict free transmission can be achieved by allocating the channel to the users either statically
or dynamically. In the case of the static allocation, whether each user is active or not, the
channel capacity is divided among the users and to each user assigned a �x part. Hence the
division can be done for a fraction of time like in Time Division Multiple Access (TDMA),
where the channel capacity of one slot per frame is assigned to each user. The frequency bands
division results in the Frequency Division Multiple Access (FDMA) protocol where a �xed band
is assigned to each user. The principles of FDMA and TDMA are shown in Figure 2.3 [6].

18 2.2. MULTIPLE ACCESS PROTOCOLS

Alocated frequency band

Time

Frequency

(a)

Alo-
cated
time
slot

Time

Frequency

(b)

Figure 2.3: (a) The division of bandwidth in FDMA and (b) the division of time in TDMA

The dynamic allocation assign a channel only to a user who has something to transmit. Thus,
the user without transmitting data does not waste the channel capacity. This allocation can
be further classi�ed, based on the assignment scheduling, into reservation and token passing
schemes. With reservation schemes, the users �rst announce their intent to transmit and all
those who have so announced will transmit before new users have a chance to announce their
intent to transmit. With token passing schemes, a special frame (Token) is passed in order from
one terminal to another terminal permitting only the token holder to transmit [6].

Contention protocol schemes di�er from con�ict free schemes since there is no scheduling of
transmissions. Hence, collisions may occur and the protocol should be able to solve those
con�icts when several users transmit simultaneously. Also the resolution process together with
the idle users consume channel resources, which is a major di�erence between various contention
protocols.

In order to guarantee a successful transmission, it is necessary to �nd a way to avoid collisions.
Also here a distinction between static and dynamic resolutions can be made. Static resolution
means that the dynamics of the network does not have any in�uence on the behavior of the
system. The static resolution can be either probabilistic, meaning that the transmission of
a packet happens with a �xed probability, or based on ID, meaning that users have di�erent
priority in the network. The dynamic resolution can prioritize packets based on time of arrival
or be probabilistic, but with a dynamic probability changing as a result of the interference in
the network [6].

Both classes have advantages and disadvantages regarding resource usage, throughput and
scalability. Some of these are listed in Table 2.1.

2.2. MULTIPLE ACCESS PROTOCOLS 19

MAP class Advantages Disadvantages

Con�ict free No transmission interference Low throughput for each user
Fair division of capacity Unused resources for idle users

Contention E�cient for "bursty" users Resource consumption for error correction
E�cient in ad-hoc networks Possible delay and unfair capacity division

Table 2.1: Some of the advantages and disadvantages for the two classes of MAPs

2.2.2 Aloha

The Aloha protocol was used on Hawaii in the early 1970ties and was one of the �rst design of a
computer network via a shared medium (radio). The system was build on a hub/star typology
and used two di�erent frequencies where the hub broadcasted on the �rst one and the clients
were transmitting on the other frequency. The basic idea of this protocol is:

• If a client has a packet to send, it will transmit it.

• In case of collision in this transmission, the client will try to resend the packet later.

This means that if the packet is successfully received by the hub, it immediately replies with
the same packet as an acknowledgement. If the client never receives this reply the result is a
collision and a retransmission must be made. The principle is called Pure Aloha and can be
seen in Figure 2.4. Pure Aloha does only have a maximum throughput of about 18.4% due to
collisions.

Figure 2.4: An example of Pure Aloha with 2 client and a base station [4]

Later this throughput was doubled to 36.8% by introducing the principle of Slotted Aloha. In
slotted version of Aloha timeslots are introduced where a centralized clock transmits a tick in
the beginning of each slot. The clients can only transmit when a tick is received (beginning of
a new slot), this can be seen in Figure 2.5 [13].

20 2.2. MULTIPLE ACCESS PROTOCOLS

Figure 2.5: An example of Slotted Aloha with 2 client and a base station [4]

2.2.3 CSMA protocols

An improvement to the Pure Aloha is to sense the carrier before accessing the medium. Proto-
cols in which a node veri�es the absence of other tra�c before transmitting are called Carrier
Sense Multiple Access (CSMA).

Carrier Sense describes the fact that, before a node transmits, it "listens" to the medium to
determine if another node in the neighborhood is transmitting on the same channel. If the
medium is quiet, the node recognizes that this is an appropriate time to transmit. If a carrier
is sensed, the node waits for the transmission in progress to �nish before initiating its own
transmission. In this way, the probability of a collision decreases.[7]

Multiple Access describes the fact that multiple nodes send and receive on the medium. Trans-
missions by one node are generally received by all other nodes using the same medium. There
are di�erent variations of the CSMA protocol which is described below.

1-persistent CSMA
When a station has data to send, it �rst listens to the channel to see if anyone else is trans-
mitting at that moment. If the channel is idle, the node transmits a packet immediately with
a probability of 1. If the channel is busy, the node keeps listening and transmit immediately
when the channel becomes idle. As soon as the channel becomes idle, all the nodes wishing
to transmit access the medium at the same time. Collisions can occur only when more than
one user begins transmitting within the period of propagation delay. Even if the propagation
delay is zero, there will still be collisions because of the time from sensing the idle carrier to
the transmission starts [10] [7].

Non-persistent CSMA
To send data, a node �rst listens to the channel to see if anyone else is transmitting and starts
sending immediately if the medium is idle. If the medium is busy, the node waits a random
amount of time and sense the channel again. Consequently, this algorithm leads to better
channel utilization but longer delays than 1-persistent CSMA [10].

2.2. MULTIPLE ACCESS PROTOCOLS 21

P-persistent CSMA
In p-persistent CSMA, the nodes also sense the medium before sending. If the channel is idle,
transmit a packet with probability p and delay for one time slot with probability (1-p) and
start over. If the channel is busy, then delay one time-slot and start over. Figure 2.6 shows the
di�erent states in p-persistent CSMA. [10]

Idle Sense the medium

WaitTransmit decision

Send

Packet
to send

Medium Idle

Medium
busy

Probability
(1-p)

Probability
(p)

Figure 2.6: State diagram showing the principles of p-persistent CSMA.

CSMA and Aloha comparison
Figure 2.7 shows the computed throughput versus o�ered tra�c for all three x-persistent CSMA
protocols, as well as for pure and slotted Aloha. In this �gure the throughput S on the y-axis
represents the expected number of successful transmissions per packet. The load G in the x-
axis represents the number of attempted transmissions. Due to the possibility of collisions the
load is usually bigger than the throughput. For example the throughput S for pure Aloha is
S = Ge−2G and as seen on the �gure it has a maximum value of S = 1/2e = 0.184 when the
load is equal to 0.5. The slotted Aloha instead has a throughput of S = Ge−G. When the load
is equal to 1, S has its maximum value of S = 0.368 that is the one of pure Aloha. Figure 2.7
also shows how the CSMA protocols have a better throughput than Aloha protocols. [10]

22 2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS

another station has begun transmitting. In the latter case, the unlucky station acts as if there
had been a collision (i.e., it waits a random time and starts again). If the station initially senses
the channel busy, it waits until the next slot and applies the above algorithm. Figure 2.6 shows
the computed throughput versus o�ered tra�c for all three protocols, as well as for pure and
slotted ALOHA.

Figure 2.6: Comparison of the channel utilization versus load for various random access protocols[?]

2.4.2 Hidden terminal problem

Figure 2.7: Comparison of the channel utilization versus load for various random access protocols
[10].

CSMA with Collision Detection
In Carrier Sense Multiple Access With Collision Detection (CSMA/CD), if a collision occurs,
the �rst node which detects the collision sends a jam signal to all stations to indicate that there
has been a collision. After receiving a jam signal, a node that was attempting to transmit abort
its transmission and tries again later after waiting a random amount of time. The minimum
time to detect the collision is the time it takes the signal to propagate from one station to
the other and the maximum time needed is two times the propagation delay. This results in a
much more e�cient use of the media since the bandwidth of transmitting the entire frame is
not wasted [7].

2.3 Multiple access in wireless networks

CSMA/CD scheme is a widely used MAC scheme for wired networks, but the use of this
protocol in wireless networks results in additional problems. CSMA/CD is not really interested
in collisions at the sender, but rather in those at the receiver. The signal should reach the
receiver without collisions. But the sender is the one detecting collisions. The di�erence here
is in the signal strength, which remains almost the same for wired networks. For wireless
networks, the signal strength decreases proportionally to the square of the distance to the
transmitter. Obstacles in the line of sight attenuate the signal even further. This means that
the collision at the receiver due to another sender, in many cases goes undetected at the sender.
As the transmission power in the area of the transmitting antenna is much higher than the
receiving power, collision detection is very di�cult in wireless scenarios, and in practice not
possible. There are several other issues to consider when moving from the wired domain into
the wireless. Some of these are described in the following [7].

2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS 23

2.3.1 Hidden and Exposed terminal problems

Figure 2.8 illustrates the hidden terminal problem. B is in the transmission range of A and C
but C is not in transmission range of A and A is not in transmission range of C. Suppose that
nodes A and C both want to transmit data to node B. They will both sense the medium free
and transmit causing a collision at B. Hence, A is a hidden terminal for C and vice versa [7].

Figure 2.8: Node A and C are not in transmission range of each other. Thus they are hidden
terminals to each other.

Figure 2.9 illustrates the exposed terminal problem. B is in transmission range of A and C, and
C is in transmission range of B and D. Suppose that node B is sending a packet to node A and
C intends to transmit data to node D. C senses the medium to be busy and will not send any
packet, postponing its transmission. In reality, no collision would have happened at A because
A is outside the transmission range of C. Hence, this problem causes unnecessary delay. This
means that C is exposed to B [7].

24 2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS

Figure 2.9: Node B and C is in transmission range of each other and want to send in di�erent
directions. Thus they are exposed terminals to each other.

2.3.2 Near and far terminals

Figure 2.10 illustrates the near-far terminal problem. Suppose that A and B are both sending
with the same transmission power. As the signal strength decreases proportionally to the square
of the distance, B's signal drowns out A's signal. As a result, C cannot receive A's transmission.
Thus, precise power control is needed to receive all senders with the same strength at the receiver
[7].

Figure 2.10: Near and far terminals. Node A can not send to node C if B is transmitting as B's
signal will drown out the one from A.

2.3.3 Multiple Access with Collision Avoidance

CSMA with Collision Avoidance (CSMA/CA) is used to improve the performance of pure
CSMA. Like in CSMA a node wishing to transmit will �rst listen to the channel for a prede-
termined amount of time. If the channel is sensed idle, the node will start its transmission.
CSMA/CA is used where CSMA/CD cannot be implemented due to the nature of the channel.
CSMA/CA implements a Request To Send / Clear To Send (RTS/CTS) mechanism known as
the IEEE 802.11 RTS/CTS exchange.

2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS 25

Multiple Access with Collision Avoidance (MACA) is a MAC protocol used in wireless LAN data
transmission to avoid collisions caused by the hidden terminal problem and to simplify exposed
terminal problem. It is inspired by the mechanisms of CSMA/CA, but does not implement
carrier sensing (which leaves the name MA/CA or simply MACA) [2].

In this scheme, the node that needs to transmit a message sends a small RTS message to the
receiver. The receiver immediately replies with a small CTS message to the sender. After
receiving the CTS, the sender will transmit the data message. Both the RTS and the CTS
messages carry the length of (or time to transmit) the data message as well as the names of
sender and receiver [10].

Meanwhile, any node hearing the RTS must remain silent during the time needed for the other
nodes to exchange CTS message and data packet. Any node hearing the CTS must remain
silent until the data transmission is complete. Figure 2.11 shows how MACA can solve the
hidden terminal problem.[7]

Figure 2.11: The RTS/CTS exchange can solve the hidden terminal problem. The �gure shows an
exchange between node A and B with the CTS overheard by node C

A wants to send to B and C is only in the transmission range of B. A send RTS which is
only heard by B, and B responds with CTS heard by both A and C. Thus C will defer its
transmission for the duration indicated in the CTS toward B. Still, collisions can occur during
the sending of an RTS (i.e. A and C might send RTS simultaneously). But RTS packets are
very small compared to the data transmission, and therefore unlikely to collide.

MACA can also help solving the exposed terminal problem as shown in Figure 2.12.

26 2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS

Figure 2.12: The RTS/CTS exchange can solve the exposed terminal problem. C is allowed to send
to D is only RTS, but not CTS is heard.

In the case of B wanting to send to A and C wanting to send to D, C will hear an RTS message
from B to A containing the name of the receiver A and the sender B. Thus C will defer its
transmission to D, but if C is not hearing a the corresponding CTS message it will not be in
range of the receiver A. I.e. C only waits for the time of a CTS to arrive and is allowed to start
a transmission to D if no CTS arrives.

Figure 2.13 shows a simpli�ed state diagram for a sender and receiver that could realize
MACA.[7]

Figure 2.13: State diagrams for MACA with included acknowledgement [7]

MACA also introduces a bypass of the RTS/CTS dialog. RTS and CTS packet should be very
small compared to the data packet for optimal performance and minimal overheard. If the MAC
protocol implementing MACA allows for varying data packet sizes, small data packets about
the same size as the RTS and CTS packets could occur. In this case the RTS/CTS exchange

2.3. MULTIPLE ACCESS IN WIRELESS NETWORKS 27

may be bypassed to send the data packet faster, i.e. the data packet is send immediately to the
receiver. The sender must of course wait if RTS or CTS packets from other nodes is received.

2.3.4 MACAW

MACAW is a slotted MAC protocol highly used in ad-hoc networks. Furthermore manyWireless
sensor network's MAC protocols are based on it, i.e. S-MAC [12]. In the protocol, collision
avoidance (RTS/CTS) is used, together with acknowledgement (ACK) to provide solution to
the hidden terminal problem. However, MACAW does not adopt carrier sensing, but is using
a di�erent approach: Just before sending a data packet, the node sends a short Data-Sending
packet (DS) to let nearby nodes know that the RTS/CTS exchange was successful [11].

The MACAW protocol was introduced to extend the function of the MACA protocol. Figure
2.14 illustrates an example of the MACAW protocol. It is assumed that only adjacent nodes
are in transmission range of each other.

RTS(1)

DCBA
RTS(1) CTS(2) CTS(2)

data(4)DS(3)

E
RTS(5)

ACK(6) RRTS(7)

Figure 2.14: Principles of MACAW. Only adjacent nodes are in transmission range of each other.

Assume that node B has data to transfer to node C. A successful data transfer in a network
containing 6 nodes consists of the following sequence of frames:

1. B sends RTS to C which is also heard by A

2. C replies with CTS which is also heard by D

3. B will now send DS frame to inform A that the RTS/CTS exchange was successful

4. B starts sending the data packet to C

5. Suppose that E now has data to send to D and sends RTS. D can hear the RTS but not
reply due to the ongoing transmission to C

6. After successful transmission, C sends ACK to B

7. D is now allowed to transmit and sends a Request for Request To Send (RRTS) to inform E
about the idle channel

MACAW is a non-persistent MAC protocol meaning that if the message to transmit contains
more than one packet, the node A has to wait a random time after each successful data transfer
and then compete with the adjacent nodes again for the medium using the RTS/CTS mecha-
nism.

28 2.4. OTHER SENSOR NETWORK ISSUES

2.4 Other sensor network issues

Sensor networks may have di�erent requirements depending on which application they should
be used for. Requirements may also depend on the surrounding environment and the sensor
hardware. This section addresses other issues to consider when designing a MAC protocol for
sensor networks.

2.4.1 Energy consumption

Energy e�ciency is an important attribute for sensor network MAC protocols, with large num-
bers of battery powered nodes, it is very di�cult to change or recharge batteries for these nodes,
so prolonging the lifetime of each node is a critical issue. Energy consumption occurs in three
domains: sensing, data processing, and communications. The major sources of energy waste
are:

• Collisions

• Idle listening

• Overhearing - When a nodes get a packet for another node

• Protocol overhead - Control frames do not carry useful information although their transmis-
sion consumes energy

• Adaptation - Recon�guring when nodes join and leave the network

It is possible to use the network density and the consequent redundant information to save
energy. Some sensors can be switched o� while others which cover about all the a�ected area
can be kept awake. It is necessary to employ a technique that manages the sleeping-listening
period of the nodes. An e�ective method to implement this can be grouping nodes together in
clusters so that each of them covers an increased area of the territory. These clusters can be
put in sleeping/listening mode according to predetermined settings. During sleep, a node turns
o� its radio, and sets a timer to awake itself later.

The scheme is shown in Figure 2.15. Each node goes to sleep for some time, and then wakes
up and listens to see if any other node wants to talk to it. [12]

time

Listen Sleep SleepListen

Figure 2.15: Periodic listen and sleep transition to save energy [12]

2.5. PROBLEM STATEMENT 29

2.4.2 Real time

Some applications using sensor networks may have timing requirements for optimal perfor-
mance. Examples of this could be applications with continuous �ow of data through the net-
work. E.g. voice tra�c or measurements of a rapid changing process. In these applications it is
essential that the most recent data is available, but loss of individual packets is not important.
This e�ects the design of a MAC protocol i.e. such a protocol should not handle retransmission
of packets.

The protocol should be optimized for minimum delay rather than robustness. Medium reser-
vation with RTS/CTS packets should be avoided as they introduce an unnecessary overhead
causing delay. Acknowledgement packets is also not needed as no retransmissions should occur.
Thus a 1-persistant CSMA protocol would be the best solution for a real time sensor network.

2.5 Problem statement

After investigating these issues regarding development of wireless networks, it will be decided
which type of MAC protocol to continue designing. Additionally it will be decided which
subjects not to be considered any further. This project aims at developing a MAC protocol
and also to test an implementation of this, but at this point it is not the intention to make the
protocol suited for direct deployment in a �nal system. Because of that, the implementation
will be tested and demonstrated with a stationary power supply to each mote in the system
and the issue of energy consumption will not be considered in the design.

It is desired to make a simple and robust communication protocol with minimal retransmissions
and loss of data, which can be achieved by avoiding collisions. Throughput and latency is of
minor importance in the �rst design iteration which will not include real time aspects. Thus
it is decided to work on designing and implementing a collision avoidance scheme (RTS/CTS)
with acknowledgements. Carrier sensing will also be added because the ISM band is used by
many other devices and networks which can cause collisions. Also collisions of RTS packets can
be minimized in this way.

To test the network and protocol performance, and to visualize the potential use of a sensor
network as a communication network, a mobile phone application utilizing the network will
also be developed. The complete system can be used to extend the range of phone-to-phone
communication via Bluetooth.

Chapter 3

Requirements speci�cation

It is essential to establish correct requirements and speci�cations early in the development pro-
cess to prevent errors later on in the system life cycle. Therefore, the �rst step in the design
process is to establish the preconditions of the system in order to generate the requirements
speci�cations regarding the MAC protocol and the mobile phone application. It is also impor-
tant to know how to verify that the requirements are correctly implemented. The acceptance
test speci�cation in Appendix A describes how this can be done.

3.1 Preconditions

The MAC protocol will be designed for the second mote developed by Aalborg University which
means that hardware requirements are already given and implemented as a base of this project.
I.e. some protocol requirements are created to �t the hardware of the motes regarding e.g.
packet size and transmission range. The requirements of the system also aims at creating a test
scenario for both the protocol and the complete system, i.e. a scenario where routing is �xed
and motes do not move in space from their starting point. For communication between motes
and mobile phone it is required for the mobile phone to support Bluetooth serial connection.

3.2 System requirements

1. The system must consist of a network of at least 4 motes and 2 mobile phones.

2. The two motes at the border of the network must have Bluetooth interfaces to communicate
with the mobile phones.

3. The system must be able to convey either text, image or audio �les from one mobile phone
through the multihop network of motes to the other mobile phone.

3.3. MOTE AND PROTOCOL REQUIREMENTS 31

3.3 Mote and protocol requirements

1. The protocol must implement 1-persistent carrier sensing.

2. The protocol must implement collision avoidance (RTS/CTS) scheme.

3. The protocol must implement packet acknowledgements (ACK).

4. If timeout on ACK packets occur, the RTS/CTS exchange must be done again.

5. Packet payload size must be maximum 29 bytes.

6. The �rst three bytes in each packet must be used as header.

7. Each motes's ISM interface must be identi�ed by a 32 bit address.

8. For testing purposes each mote must have a transmission range of maximum 50 cm.

9. The motes must be powered by a static power supply or batteries.

10. The motes with Bluetooth module must be able to accept a connection from a mobile
phone.

11. The network must convey all non-real-time tra�c, meaning no speci�c time of arrival will
be guaranteed.

12. All data must arrive correctly at the receiver, i.e. duplicated packets must not occur.

3.4 Mobile phone application requirements

1. At least one mote with Bluetooth interface must be less far than 10 metres from the mobile
phone.

2. A sender application and a receiver application must be created.

3. A GUI must be created for the sender application.

4. A GUI must be created for the receiver application.

5. The sender function must be able to:

(a) Create text �les.

(b) Create image �les.

(c) Create audio �les.

(d) Search for Bluetooth devices.

(e) Display the devices to which it is possible to establish a connection.

32 3.4. MOBILE PHONE APPLICATION REQUIREMENTS

(f) Permit to the user to select the desired device.

(g) Establish a connection to the selected device.

(h) Send the messages.

6. The receiver function must be able to:

(a) Search for Bluetooth devices.

(b) Display the devices to which it is possible to establish a connection.

(c) Permit to the user to select the desired device.

(d) Establish a connection to the selected device.

(e) Listen for incoming messages until the program is closed.

(f) Show the received message.

7. The data to send must be split into packets with a size of 29 bytes.

Chapter 4

System design

In this chapter the design of the whole system including the motes and the two mobile phones
will be described to satisfy the speci�ed requirements. First a general scenario of the network
is outlined to show how the system can be used as a real application. Then the interfaces in
the network are de�ned as well as the communication �ow between the individual devices in
the system.

4.1 Network scenario

The goal of this project is to design a MAC protocol that can provide a robust connection
between two mobile phones, via a wireless mote line network topology as shown in Figure 4.1.
When the mobile phone needs to transmit something, the message will be directed to the �rst
mote in the network through a Bluetooth connection. The motes will communicate over the
ISM interface to transmit a unidirectional �ow of messages through the multi hop network. The
second mobile phone will connect to the �xed wireless mote network via its Bluetooth interface
to receive the message.

The motes have di�erent roles in the network: The �rst mote is an input mote (I), the motes
transmitting the message through the network are called forwarders (F), while the last mote is
an output mote (O). Depending on the role, the mote knows where to send the packets.

34 4.1. NETWORK SCENARIO

1 2 3 4

Figure 4.1: The network scenario is a line network topology with 2 mobile phones and 4 motes.

The routing is static, with the advantage of being predictable, and simple to set up. It will be
easy to manage in the small network but does not scale well in large networks and does not
dynamically adapt to network topology changes or equipment failures. Ad-hoc communication
between random nodes in the network will be excluded. In the test scenario in Figure 4.1 it is
also assumed that the nodes are not moving and at a random point in time during transmission,
all motes have packets they want to send.

The mote network consist of 4 motes as shown in Figure 4.1. The number of motes is chosen
to make the smallest network possible because only a limited number of motes is available. To
test the avoidance of the hidden terminal problem at least 4 motes in the network is needed. It
will not be possible to test the avoidance of the exposed terminal problem because the �ow of
data is unidirectional.

Messages �ow from the �rst node to the last one in a line topology, so node 1 sends only to 2,
2 only to 3, and 3 only to 4 and so on. The communication in the network follows the steps
below:

1. Initialization of mobile phone to mote and mote to mobile phone connection via the Bluetooth
interface.

2. The mobile phone will send the data only after receiving a request from mote 1 which
indicates that its bu�er is not full. If this is the case, new packets may be sent to the mote.

3. When there are no more packets to transmit, mote 1 will wait for timeout, and close the
Bluetooth connection to the phone.

4. Before forwarding the packet in the network, the mote broadcasts an RTS packet to its local
neighborhood containing the sender and receiver.

5. When mote 2 hears an RTS packet for data destined for it from node 1, it broadcasts a CTS
packet to its local neighborhood, similar in structure to the RTS.

6. Node 1 sends a data packet to node 2.

7. Node 2 responds with an ACK packet.

4.1. NETWORK SCENARIO 35

8. This pattern continues throughout the network until the last mote (4) is reached.

9. Mote 4 will send the packets to the receiving mobile phone and wait for acknowledgement for
each packet. This can be done because the switching between send and receive for Bluetooth
is very fast (approximately 20 ms). See Appendix C.

10. The mobile phone will close the connection when all the packets are transmitted and inform
the last mote about this by an end message.

Before the transmission of each packet, a carrier sensing (CS) of the medium is needed. If the
channel is idle, the nodes will transmit the packet with probability of 1. If the channel is busy,
the nodes will keep sensing the medium and begin transmission as soon as the channel becomes
idle. Figure 4.2 shows the �ow of a packet in the network.

RTS

CTS ACK

Mote 1

Mote N

CS

CS

CS

CS

Phone 1

Phone 2

Payload

Payload

Payload

Message
direction

Time

Figure 4.2: The �ow of one payload packet through a network of N motes.

Even though collisions and loss of packets should not occur in the network it can happen that
control packets (RTS, CTS and ACK) are lost. In the case of RTS and CTS the result would
just be a retransmission of RTS and a small delay, but if ACK is lost the payload will be
retransmitted and duplicated at the receiver mote. To prevent this a sequence number can be
introduced. Figure 4.3 illustrates this problem and the solution with the sequence number.

36 4.2. NETWORK INTERFACES

ACK

Pck 1

Pck 1

ACK is lost

Pck 1 is
retransmitted Duplicate

of Pck 1ACK

ACK

Pck 1

Pck 1

ACK is lost

Pck 1 is
retransmitted

Wrong sequence
number.
ACK sent again

ACK

Sequence number
is incremented

(a) (b)

Figure 4.3: (a) When ACK is lost, the packet is retransmitted and duplicated on the receiver mote.
(b) When introducing sequence numbers, the duplicate packet will be discarted on the receiver mote
because the sequence number is di�erent from the expected one. The lost ACK will be sent again.

The network is designed to be FIFO (First In, First Out) i.e. the packets leave the network
in the same order as they enter. This means that only a single bit is needed for the sequence
number which will make each packet di�erent from the one before and after.

On each dsPIC microprocessor the same software should be implemented. However, each mote
must be con�gured individually, specifying its role in the network: I, O or F, as well as its
neighbors.

4.2 Network interfaces

In this section the design of the mote header is described regarding the mechanisms of RT-
S/CTS/PAYLOAD/ACK packets. Also the network interfaces between the mobile phones and
the motes in the network will be explained.

4.2.1 Header design

The actual address of the packets sent between two motes is determined by the nRF and can be
seen to the right in Figure B.1 of Appendix B. A Data Package contains a destination address
plus the payload. Preamble and CRC are generated and checked automatically and will not be
considered further.

The �ow chart in Figure B.1 shows that a packet will only be received if the the address matches
the mote. Otherwise the nRF will continue listening for a correct address. This means that if
all motes must be able to detect and receive all transmissions, the nRF of the motes must all
have the same address. The unique mote address must be set and stored in the memory of the
dsPIC and the header of each packet will be the �rst three bytes of the nRF payload.

4.2. NETWORK INTERFACES 37

The header will be designed to inform about sending and receiving mote as well as di�erent
�ags indicating packet options. The length of each mote's address is one byte, thus the �rst two
bytes are assigned for sender and receiver address. This means that the protocol can support
a network of 256 motes. The last byte in the header is used for the options: type, sequence
number and bu�er status.

The packet type is de�ned by the following four bits, where a bit value of one means enable:

• Bit 1 - RTS

• Bit 2 - CTS

• Bit 3 - ACK

• Bit 4 - PAYLOAD

As explained in Section 4.1 one bit is used to de�ne the sequence number where packet n has
sequence number nmod2. One bit is used to de�ne bu�er status, where 1 means full and 0
means not full. The two last bits are reserved for future use.

The remaining 29 bytes in the packets are used for payload. A full payload packet and the
speci�ed header can be seen in Figure 4.4. The header is added when the �rst mote receives
the payload from the mobile phone and removed when the last mote forwards the packet to the
receiver mobile phone.

Payload

3 bytes 29 bytes

MAC Header

Seq.
No.

Bits:

Sender
address

Receiver
address

Packet
Type

8 1

Buffer
status

8 4 1

Reserved

2

Figure 4.4: The �rst �gure is showing a full payload packet, where three bytes are assigned as
header. The second shows the header where the di�erent bits are assigned

The transmission time is not built into the RTS and CTS packets because every payload is 29
bytes and the transmission time should be the same for every packet.

4.2.2 Mobile to mote

When the mobile phone has something to send it will initialize a Bluetooth connection to the
input mote by sending an initialization message (INIT\n). Afterwards the mobile phone will

38 4.2. NETWORK INTERFACES

wait on a request (REQ) from the mote. After receiving this request which means that there
is space in the bu�er the mobile phone will send a packet (Pck) and wait for a new request.
When all packets are sent and if a timeout occurs, the mote will end the connection. A time
line of these events can be seen in Figure 4.5.

REQ

Pck

REQ

Pck

INIT \n

Figure 4.5: Communication �ow between the sender mobile phone and the input mote

The commands used in the interface between mobile phone to mote are the following text
strings:

• INIT\n - Initialization for sending

• REQ - This command is sent from the mote when there is empty space in the bu�er.

When a packet is received the mote will add the header with sender address, receiver address,
payload �ag and sequence number, whereafter it is put in the bu�er.

4.2.3 Mote to mote

When a mote receives a payload packet from another mote, it changes the addresses in the
header and sends a packet with the RTS �ag enabled to the next mote. The receiving mote
will reply by sending a packet with CTS enabled and bu�er full enabled/disabled. If the CTS
packet has bu�er full disabled the sending mote will forward the packet with payload, otherwise
the sending mote needs to send an RTS packet again. When the receiver mote have received
the packet with payload it will send an ACK packet including bu�er status. This can be seen
in Figure 4.6.

4.2. NETWORK INTERFACES 39

RTS

CTS

Pck

ACK

Figure 4.6: Communication �ow between two motes in the network

The header and header �ags are set in the following way:

• RTS packet: Sender address, receiver address, RTS enable

• CTS packet: Sender address, receiver address, CTS enable and bu�er status enabled/disabled

• ACK packet: Sender address, receiver address, ACK enable and bu�er status enabled/dis-
abled

• Payload packet: Sender address, receiver address, PAYLOAD enable, sequence number and
29 bytes of payload

4.2.4 Mote to mobile

The connection between the last mote and the receiver mobile phone is assumed to be established
prior to the start of the packet �ow. When the mote have a packet to send it will �rst wait for
a connect message (INIT\n) and then transmit the data to the mobile phone which will send
an ACK back. If the acknowledgement is not received the packet will be retransmitted. When
the mobile phone have received all packets it will terminate the connection by sending an END
message instead of ACK. The �ow between the last mote and the receiving mobile phone can
be seen in Figure 4.7.

40 4.2. NETWORK INTERFACES

Pck

ACK

Pck

INIT \n

END

Figure 4.7: Communication �ow between the end gateway mote and the receiver mobile phone

The commands used in the interface between mobile phone to mote are the following text
strings:

• INIT\n - Initialization for receiving

• ACK - Acknowledgement

• END - Termination of the connection

Chapter 5

Mote protocol design

In this chapter the design of the program to be implemented on the dsPIC will be described
using activity diagrams. These has been made to outline the di�erent sequences on the receiver
and sender side, as well as the main program. This chapter will also contain speci�c information
about the initialization and the functions of the di�erent modules in the program. A module in
the program is de�ned as a collection of functionality to accomplish a task. Each module will
described with respect to initialization and functions of the module.

5.1 Program design

The design of the program is documented through several activity diagrams which will be
described in this section. Several acronyms used in this section will be described below. These
are output signals from the nRF to be read by the dsPIC.

AM: Address Match - Indicates an incoming packet with correct ISM interface address

DR: Data Ready - Indicates that a correct packet is received and ready to be read by the
dsPIC

CD: Carrier Detect - Indicates that the carrier frequency is busy

5.1.1 Main �ow

Before the motes are ready to send or receive data packets, the various subsystems of the mote
must be initialized. I.e. the two UARTs, the SPI and the pin I/O con�guration of the dsPIC
plus the con�guration of the nRF. The motes are not capable of transmitting and receiving
simultaneously, but a mote must try to forward the packets in the bu�er and listen for new

42 5.1. PROGRAM DESIGN

incoming packets concurrently. Thus the mote must monitor the channel before it tries to
send a packet to minimize the possibility of pending incoming packets. If incoming packets are
detected, they are expected to be RTS/CTS according to the protocol and the mote will start
receiving if the address is correct or backo� otherwise. If the mote has packets in the bu�er
and the channel seems to be idle, it will start transmitting. These actions is shown in Figure
5.1 and a description of the �ow is given below.

Init

Read nRF
payload

Wait

Go to send
procedure

[AM][No AM]

[DR]

[No DR]

[Not my address]

[RTS]

[CTS]

[My address]

[Buffer items]

[No buffer items]

Go to receive
procedure

[From send/receive end points]

Figure 5.1: Main activity diagram of the program

1. The subsystems are initialized

2. If the bu�er is empty the mote will continue searching for AM

3. If there are packets in the bu�er the mote will start sending

4. If AM occurs it will wait for DR

5. The nRF payload is read

5.1. PROGRAM DESIGN 43

6. If the packet is a CTS, other motes want to send and the mote will backo� (wait)

7. If the packet is an RTS, the mote will start receiving or backo�

When the main �ow ends the mote will start either the send procedure or the receive procedure
which are described in Sections 5.1.2 and 5.1.3, respectively. The incoming arrow below the
Init procedure of Figure 5.1 is from the ends of the sender and receiver �ow charts.

5.1.2 Sender �ow

Figure 5.2 shows the �ow chart of the send procedure of the program. This procedure starts
when there are packets in the bu�er to be sent to other motes. The main �ow chart in Figure
5.1 runs this procedure in the action "Go to send procedure". The send procedure will return
to the main �ow if a carrier is detected because it could be an incoming packet for the mote.
Otherwise the mote will follow the protocol sending RTS, expecting CTS and sending the data
packet. Carrier sensing and timeouts are built into these actions to minimize collisions and
handle them at occurrence. The actions in the activity diagram are described below.

Send RTS

Read nRF
Payload

[AM & DR]

Send payload
packet

[NO CD]

[CD]

[AM & DR]

[ACK & Correct address]

[Correct flags and adress]

[No AM & DR]

[No timeout]

[Timeout]

[Wrong flags or address]

[No AM & DR]

[No timeout]
[Wrong flags or address]

[No CD]

[CD]

Remove packet
from buffer

[Timeout]

Figure 5.2: Activity diagram of the send procedure of the program

1. Before any attempts to send are made, the carrier must be sensed.

2. If the carrier is busy the �ow terminates and returns to the main �ow, otherwise an RTS
packet is sent.

44 5.1. PROGRAM DESIGN

3. The program expects a CTS packet now and waits for AM and DR until they occur or until
timeout

4. If a packet is received, it is read from the nRF and veri�ed that it is in fact a CTS packet.

5. Another carrier sensing is made before the data packet is sent.

6. The program waits for an acknowledgement or a timeout.

7. If the timeout occurs the packet must be retransmitted.

8. When a correct acknowledgement is received the transmission is successful. The packet is
removed from the bu�er and the program returns to the main �ow.

If the role of the mote is "output" the program must forward the packets to a mobile phone
and not to another mote. In this case the send procedure is di�erent and more simple because
Bluetooth handles the multiple access control which allows the mote to see the Bluetooth link
as a serial connection. The dsPIC is only connected to the RX and TX pins of the Bluetooth
module and can not know if the Bluetooth connection is established or not. Thus a connection
�ag is needed to indicate the Bluetooth connection status.

The diagram in Figure 5.3 shows the �ow of the Bluetooth send procedure. The following steps
are executed:

Figure 5.3: Activity diagram of the send procedure for the output mote of the network.

1. Check the connection �ag to determine if connection is established. Return if no connection.

5.1. PROGRAM DESIGN 45

2. Send the payload of the packet to the mobile phone.

3. Wait for ACK from the phone or return if timeout.

4. When ACK is received, remove the packet from the bu�er and return.

5.1.3 Receiver �ow

Figure 5.4 shows the �ow chart of the receive procedure of the program. This procedure starts
when an RTS packet with the correct address is received. It is run from the main �ow of
Figure 5.1 with the action "Go to receive procedure". The procedure will send a CTS when
the carrier is idle and wait for data packet to arrive. If a correct data packet is received, an
acknowledgement will be sent. The actions of the receive procedure are described below.

Send
CTS

[CD]

[No CD]

Read nRF
payload

[AM & DR]

[Correct flags and address]

Send ACK
[No CD]

[No AM & DR][No timeout]

[Timeout]

[Wrong flags or address]

[CD]

Figure 5.4: Activity diagram of the receive procedure of the program

1. A CTS packet is sent when the carrier is idle.

2. The program waits for AM and DR or returns in case of timeout.

3. At AM and DR the nRF payload is read and the packet is checked for correctness.

46 5.2. UART/BT MODULE

4. If the packet is correct an acknowledgement will be sent after a carrier sensing.

5. The procedure returns to the main �ow.

If the role of the mote is "input", it must receive packets from a mobile phone and forward
them to the next mote en the network. As the Bluetooth link to the phone is just a serial
connection, the �ow is more simple than the general one. Incoming data on Bluetooth (UART
1) is handled by interrupt on the dsPIC. This means that this receive procedure can be run
anytime from the main �ow and not only when the general receive procedure is run. Figure 5.5
shows the �ow of the Bluetooth receive procedure. The following tasks are executed:

Figure 5.5: Activity diagram of the receive procedure of the input mote.

1. Check the connection �ag. Return if the connection is not established.

2. Wait until 29 bytes of payload is received. (Interrupt is run for each received byte)

3. Add a header to the payload with sender and receiver address plus the payload �ag.

4. Put the packet in the bu�er.

5. If there is more space in the bu�er, an REQ message is sent to the mobile phone.

6. If the bu�er is full, the REQ message will be sent the next time a packet is removed from
the bu�er.

5.2 UART/BT module

UART1 is used as an interface to bridge the communication between the dsPIC processor and
the Bluetooth module in the mote.UART2 is connected to the USB interface and is used for
con�guration and debugging of the mote program.

5.2. UART/BT MODULE 47

To the dsPIC, the UART appears as an 8-bit input and output port that it can read from and
write to.

A UART consists of a transmitter, which transmits serial data via a transmit data (TxD) pin,
and a receiver, which receives serial data via a receive data (RxD) pin.

5.2.1 Initialization

Before transmitting or receiving data, the UART module must be con�gured in the following
way:

• Set the number of data bits, number of stop bits and parity selection.

• Write appropriate baud rate value to the BRGx register which controls the period of a free-
running 16-bit timer. The equation below shows the formula for computation of the baud
rate.

BRGx =
FCY

16 ∗BaudRate
− 1

where FCY denotes the instruction cycle clock frequency.

• Set up receive interrupt enable and priority bits.

Both UART1 and UART2 are con�gured in the following way:

• 8 data bits

• 1 stop bit

• No parity

• 57600 bit/s

• Receive interrupt enabled, priority 2

5.2.2 Module functions

BT put char
Whenever the mote has data to send to the mobile phone, it just sends it to the UART in byte
format (8 bits). The transmission starts only when the data to be transmitted is written to the
bu�er.

A transmit routine, with a string of characters as an input, will be called each time data is sent
from the other nodes to the mobile phone. For this purpose, the routine should �rst write the
string of data to be transmitted into the UART transmit bu�er and wait for transmission to
complete successfully.

48 5.3. TIMER MODULE

Receive interrupt
Whenever the UART receives data from the mobile phone, it will store it in its FIFO bu�er (8
bits), then it will indicate the availability of this data to the mote through an internal register
bit. A receive interrupt will be generated when one or more data characters have been received.
Thus, the UART module in the reception mode must perform the following tasks:

• Calling interrupt for each byte.

• Read the 29 arrived bytes from the UART data register.

• Write the 29 bytes to a bu�er.

• Clear interrupt �ag.

USB send
This function is only need for debugging. It will write the input text string to the USB interface
to inform about various actions in the program. E.g. reception and transmission of packets.

5.3 Timer module

The purpose of the timer module is to provide the timing functions of the program. The timer
is used to set timeouts and to put the program into a wait mode e.g. when other motes has
reserved the medium with RTS/CTS packets. There are nine 16 bit timers in the dsPIC. Timer1
is both used to put the running program in a paused state and setting timeout for CTS and
ACK packets. The same timer can be used for these events as they never occur at the same
time. A timeout for the Bluetooth connection can occur independent of other timeouts, thus
Timer2 is used for this purpose.

5.3.1 Initialization

Timer1 and Timer2 is con�gured in the same way with the following settings:

• Gate time accumulation disabled

• Continue timer operations in CPU idle mode

• Timer prescaler 1:1

• Use internal clock source (same one used by CPU)

• No synchronization of external clock

5.3. TIMER MODULE 49

5.3.2 Module functions

Pause
This function puts the running program in a paused state for a speci�ed duration of time.
The input of this function is the duration speci�ed in milliseconds as an integer value n. The
function will start the timer and enable interrupt to occur every time the timer reaches a speci�c
value which is the timer period. The clock frequency of the on board oscillator is 22.118.000 Hz
which means that the period must be 22.118 clock cycles to make an interrupt each millisecond.
The function will return and the program continue when the interrupt routine has run n times.

The Pause function will execute the following tasks:

1. Enable interrupt for Timer1 with highest priority to obtain optimal timing

2. Reset Timer1

3. Start Timer1

4. Wait until n interrupts has occurred

5. Reset number of occurred interrupts

6. Stop Timer1

Timeout
This function is used to wait for expected control packets i.e. CTS and ACK. The function
works in the same way as the Pause function, but it will return either when the input time n is
exceeded or when a packet is received. Di�erent values will be returned depending on whether
the result was timeout or received packet.

BT TimeOut
This function is the same as the Timeout function, but it returns either when the input time n

is exceeded or when and ACK is received via Bluetooth.

Timer1 interrupt
This interrupt routine is called every time Timer1 reaches its period value and with the settings
of Timer1 this occurs each millisecond. The tasks of this interrupt is the following:

1. Increment number of occurred interrupts

2. Reset Timer1

Timer2 interrupt
Like Timer1 interrupt, this interrupt is called ever millisecond when enabled. It is used to
terminate the Bluetooth connection at the input mote when a transmission is complete. This

50 5.4. PACKET HANDLING MODULE

is done by timeout as stated in Section 4.2.2. The interrupt routine checks if the connection
timeout is exceeded to reset a connection �ag. This is done in the following tasks:

1. Increment connection time (number of occurred interrupts)

2. If connection time has exceeded the speci�ed time, the connection �ag is cleared and the
connection time reset.

3. Reset Timer2

5.4 Packet handling module

This module must take care of the incoming packets. This is done by adding or changing the
�elds in the header i.e. addresses and �ags The module is also responsible for creating control
packets (RTS/CTS/ACK).

5.4.1 Initialization

No initialization is needed for this module

5.4.2 Module functions

Add header
This function will add the header to the payload packet when it enters the mote network. The
function can have the following input:

• Sender address - address of local mote

• Receiver address - address of next mote in the network

• Header �ags - RTS, CTS, ACK, PAYLOAD, bu�er full and sequence number

Read header
When a mote inside the network receives a packet it must read the content of the header. The
function will return the following result:

• Sender address - address of the sending mote

• Receiver address - should be equal to the address of local mote

• Header �ags - RTS, CTS, ACK, PAYLOAD, bu�er full and sequence number

5.5. SPI/NRF MODULE 51

Put in bu�er
When a mote receives a correct payload packet it must change the header such that the packet
can be forwarded to the next mote in the network. The function can change the following
options:

• Sender address - will be changed to address of local mote

• Receiver address - will be changed to address of next mote in the network

When this is done the packet is put into the bu�er and if the bu�er is full afterwards a bu�er
full �ag is set. Two pointers (input/output) are controlling where in the bu�er the next packet
should be saved to and loaded from. It means that the input pointer is pointing on the next
empty slot and the output pointer is pointing on the packet which should be selected for next
transmission. This is illustrated in Figure 5.6.

Figure 5.6: The �gure shows the bu�er containing four packets and the pointers assigned to it

Load from bu�er
This function will load the packet pointed to by the output pointer in the bu�er and return
this packet.

Remove header
Before forwarding the packet to the receiver mobile phone the mote header must be removed.

5.5 SPI/nRF module

The dsPIC of the mote is connected to the nRF through one of the SPIs and the nRF is again
connected to the loop antenna. This section will describe the setup and the data exchange
between the dsPIC and the nRF. The design is partly based on the speci�cations from the data

52 5.5. SPI/NRF MODULE

sheets of the dsPIC and the nRF, [3] and [8] respectively, because the usage of the on-chip
features is strictly speci�ed.

5.5.1 Initialization

The setup of the nRF is done in the 10 byte con�guration register. This register and others can
be manipulated by writing commands to the SPI of the nRF. The nRF is supporting commands
for reading and writing the TX address, TX payload, RX payload and con�guration registers.
The following states the settings of the con�guration register suited for the desired protocol:

Center frequency is set to 433 MHz since it is within the ISM band and the optimal frequency
for the antenna.

Output power can take on four di�erent values and will be varied according to an optimal test
scenario. A test has been made to measure the transmission range at di�erent transmission
powers and initially it is set to the lowest power (-10 dBm) which means a transmitting
range of approximately 40 cm. A test of this can be seen in Appendix E.

Reduced receiver sensitivity is set to on to get the wanted max transmission range of ap-
proximately 40 cm.

Address width both RX and TX will be the maximum of four bytes to minimize the risk of
repeating the address in the �rst bytes of the payload.[8]

Payload width varies according to the packet type.

• Payload packets: 32 bytes (maximum payload width)

• RTS/CTS/ACK packets: 3 bytes (sender address, receiver address and �ags)

RX address is set to the same for every mote. The address is de�ned to be MOTE.

Crystal oscillator frequency is set to 16 MHz corresponding to the external crystal on the
mote.

CRC is enabled and set to maximum check bits (16 bits) to minimize errors

5.5.2 Module functions

SPI write and read
The purpose of this function should be to read and write an input character from and to the
SPI port, the function will be used to:

• Write nRF con�guration

5.5. SPI/NRF MODULE 53

• Write nRF TX address

• Write nRF TX payload

• Read nRF RX payload

The routine of the function must have one of these commands, clock data in/out of the SPI
bu�er and return data if data is read.

Transmit packet
When data is ready to be sent, the function must do the following:

1. Put radio in standby mode

2. Put the nRF module into transmit mode

3. Send "Write nRF TX payload" to the nRF

4. Call the SPI write/read function in loop to clock data into the nRF TX payload register

5. Enable the nRF for transmission

6. Wait until transmission is �nished

7. Put the radio in enable mode

Receive packet
When data is ready to be received from the nRF, the function must do the following:

1. Put radio in standby mode

2. Send "Read nRF RX payload" to the nRF

3. Call the SPI write/read function in loop to clock data out of nRF

4. Save output in a variable

5. Put the radio in enable mode

Chapter 6

Mobile application design

In this chapter the design of the application for the mobile phone will be described. The
chapter is split into �ve sections: One that describes the general design of the application, two
for describing the sender and the receiver applications, one that describes the user interface
design and one describing the module design.

6.1 General description

The main purpose of the application is to allow a user to send or receive data to or from a
mote network. In order to ful�ll this purpose and the requirements speci�ed in Section 3.4, the
application must have two di�erent functionalities:

• A sender used to send data into the network

• A receiver used to receive data from the sender through the network.

These two functionalities correspond to two di�erent programs which are designed separately.
The two di�erent programs will run in the sender and the receiver phones, respectively.

6.1.1 File types

In order to test the mote network with tra�c types that can be commonly used in real appli-
cations, it has been chosen to design a program allowing the user to send and receive either:

• Text �les (txt)

• Image �les (jpg)

• Audio �les (wav)

6.1. GENERAL DESCRIPTION 55

These �les are sent through the mote network in a non-real time channel. The program should
therefore implement functions for creating/reading all these three kinds of �les.

6.1.2 Protocol

Once a �le is created, it will be divided into smaller packets, each of which must have a size of
29 bytes according to Section 3.4, that will be sent into the network one by one.

The communication between the mobile phone and the motes is a Bluetooth serial connection.
Error correction is already implemented in the Bluetooth standard and acknowledgements for
each sent packet are automatically forwarded from the Bluetooth interface of the mote to the
mobile phone [9].

This means that when a packet is sent, the next packet will be sent only when the �rst one
is correctly received. The program must however handle the data �ow control in order not to
over�ll the bu�er on the mote. In order to ful�ll this purpose, the program will only send one
packet to the mote, every time the mote will request it. Figure 4.5 shows the steps involved in
the transmission of each packet. After a �le is created, a �rst packet is sent to the receiving
mote containing:

• The extension of the �le (txt, jpg or wav)

• The size of the �le in bytes

The �rst three bytes contain the extension as a text string. The size �eld is variable and the
sender has to contain a module to �ll out the �rst packet to the standard size of 29 bytes. Thus
some additional bytes are added to �ll up the packet. The purpose of sending this information
is to inform the receiving mobile phone about the size of the �le, and therefore the number of
packets it must receive and the way it has to interpret them.

After the �rst packet, the other packets sent after each request will only contain the data of
the �le without any additional information. In order to obtain a higher data rate, it has been
chosen to use only the �rst packet for transmitting the size and the type of the �le, rather than
a header for each packet sent. This makes the protocol less general and more speci�c for the
network. Figure 6.1 shows the di�erences between the two methods.

56 6.2. SENDER

Figure 6.1: Two methods for the mobile phone protocol. To the left, the �rst packet acts like a
header. To the right, every packet has a header.

6.2 Sender

The sender device must be able to send data via Bluetooth to the �rst mote on the network.
Initially it has to create or load a �le. The user can choose the type of the �le which is going
to be sent. The choices are:

• Text

� Write: An editor will appear allowing the user to write some text
� Load: A speci�c text �le saved earlier in a folder of the phone will be sent

• Picture

� Take: The user will be able to use the camera to take a picture
� Load: A speci�c picture saved earlier in a folder of the phone will be sent

• Audio

� Record: A voice recorder will run
� Load: A speci�c audio �le saved earlier in a folder of the phone will be sent

The phone searches for all the reachable Bluetooth devices and displays them on a list. After-
wards it establishes a connection via Bluetooth with the mote selected by the user from the
list. In order to inform the mote about its presence, the mobile phone will initially send an
initialization packet.

Each �le, before being sent, has to be split in more packets, whose length is 29 bytes each. The
�rst and the last packet could contain less than 29 bytes and it is necessary to �ll up these
packets with a sequence of bytes until the length reaches 29 bytes. This is done by a padding
function.

6.2. SENDER 57

After establishing the connection with the mote the mobile phone will send the �rst packet
containing the information about the size and the type of the �le. Every time the mote receives
a packet, including the initialization message, it will send a request packet which allows the
phone to send another packet.

When the �le is completely sent the phone closes the connection. Figure 6.2 describes the
general working of the sender program.

Create the file

Send a packet

Send first packet: size and type of the file

Establish a Bluetooth connection

Close connection

Listen for Request

Size>0

Size<=0

Size = Size - 29

Send INIT packet

Listen for request

Figure 6.2: The �gure shows an activity diagram of the sender program.

Figure 6.3 shows the steps involved in the creation of a �le.

58 6.3. RECEIVER

Open an editor
and save the text

Choose the file type

Load a text file

Take a picture
 and save it

Record audio and
save it

Load a picture

Load an audio file

Audio

Picture

Text

LoadWrite LoadRecord

LoadTake

Figure 6.3: The �gure shows an activity diagram of the procedure for creating a �le.

6.3 Receiver

The receiver phone has to establish the Bluetooth connection with the last mote in the network
because the Bluetooth module in the mote is not able to establish the connection by itself.
When the connection is established an initialization packet is sent. Afterwards the phone starts
listening. The �rst received packet contains the information about the size and the type of data
which is stored in two variables.

A loop keeps running as long as the size variable is larger than zero and the mobile phone will
send an acknowledgement to the mote for each packet received.

When the loop ends, the phone saves the �le received, displays or plays it and closes the
connection after sending an end message. This message is sent to inform the network about
the closing of the connection. Figure 6.4 shows the main operations performed by the receiver
program.

6.4. GRAPHICAL USER INTERFACE 59

Check size and type

Listen for first packet

Establish a Bluetooth conncection

Size = Size - 29

Receive a packet

 Show Display Play

Close connection

Size>0

Size<=0

Audio

Picture

Text

Send ACK

Send INIT packet

Send ACK when it is received

Save the received file

Figure 6.4: The �gure shows an activity diagram of the receiver.

6.4 Graphical user interface

This section contains the design of the sender and the receiver GUI. Each of the programs is
structured as a menu the user can navigate through.

6.4.1 Sender application

When the sender application is started, a menu will be opened. As it is shown in Figure 6.5
the user is able to choose which kind of �le he wants to send and select to create or load it.

60 6.4. GRAPHICAL USER INTERFACE

Figure 6.5: The �gure shows the structure of the menu

After creating or loading the �le, the program will start to search for Bluetooth devices in the
surrounding area, and it will display them in a list. The user will interact with the program by
choosing a displayed device, and when the connection will be established a con�rming message,
and the address of the receiver device will be printed. The �le is therefore divided in packets
and started to be sent. When it is completely sent a con�rming message will be displayed.

When the �le is completely sent the program will close the connection with the mote, and the
starting menu will appear again, allowing the user to create/load a �le again and to send it.

6.4.2 Receiver application

When the receiver application is started, and the "search for devices" command is chosen, a list
with all the Bluetooth devices reachable is displayed until the user will select one. Therefore
when the connection is correctly established, the user will be informed about the status of the
program by a message saying "I'm listening". When the mobile phone starts to receive a �le, a
message saying "I'm receiving" appears in the screen as long as the whole �le is not received.

Depending in which kind of �le the mobile phone has received it will:

• Display the message

• Show the picture

• Play the audio �le and display a "Playing" message

6.5. MODULES 61

6.5 Modules

This section deals with the description of the main modules the application will contain. The
following subsections will describe the modules used for establishing the Bluetooth connection,
for the sender application, for the receiver application and the creation of the GUI. A module
in the mobile phone application is de�ned as a function executing a task. The modules are
listed and described in di�erent categories.

6.5.1 Bluetooth connection modules

• Socket opener: This module will be used to open a socket.

• Devices searcher: This module will be used to search for other Bluetooth devices in the
area.

• Connect: This module will be used to connect to one of the discovered devices.

• Connection closer: This module will close the connection, when it is no more needed.

6.5.2 Sender modules

• Text writer: This module creates a text �le and save it in a speci�c folder

• Text loader: This module loads a text �le from a speci�c folder in the phone

• Camera opener: This module starts the camera

• Picture taker: This module takes a picture and save it in a speci�c folder

• Picture loader: This module loads a picture from a speci�c folder in the phone

• Audio recorder: This module records an audio �le and save it in a speci�c folder

• Audio loader: This module loads an audio �le from a speci�c folder in the phone

• Size checker: This module checks the size of the created or loaded �le

• Extension checker: This module checks the extension of the created or loaded �le

• File splitter: This module splits the �le in packets of 29 bytes

• Padder: This module �lls up the the �rst and the last packet, that can have less than 29
bytes of data

• Init sender: This module sends an initialization message before starting the communication

• Send: This module will send a packet every time it is called

62 6.5. MODULES

• Listen: This module will put the phone in a waiting status until a request for packets is
received from the mote to which the phone communicate via Bluetooth

6.5.3 Receiver modules

• Init sender: This module sends an initialization message before starting the communication

• Listen: This module will put the phone in a waiting status until a packet is received from
the mote

• Send: This module will send an acknowledgement packet for each data packet received

• File maker: This module joins all the packets received in a unique �le

• File recognizer: This module recognizes the type of the �le received

• Text reader: This module displays the text received

• Picture viewer: This module displays the picture received

• Audio player: This module plays the audio �le received

6.5.4 GUI modules

• Menu creator: This module creates the start menu which is used by the user to choose
which type of �le to be sent and whether to create it or load it from a speci�c folder

• Connection status: This module displays a short messages which informs the user about
the opening/closing of the connection, the �le transfer and the errors

• Picture viewer: This module opens a canvas in which the received picture is appended

Chapter 7

Implementation

The purpose of this chapter is to describe the di�erence between the design and the imple-
mentation. It is split into two sections describing the mote protocol and the mobile phone
application. The programming language used to implement the MAC protocol on the dsPIC is
C, while the mobile phones are programmed in Python. First all the changes made to get the
software operating properly are illustrated. A command line interface is implemented to con-
�gure the mote via the USB interface. Then, to give a better overview of how the motes react
in the environment, some debug information are sent to the USB to be printed in a terminal
program. Also interactions between the mote network and the sender/receiver mobile phones
can be seen in screenshots. The source code of this project is not discussed in chapter, but it
can be found on the attached CD.

7.1 Mote protocol

In the implementation of the protocol on the motes some problems where encountered in receiv-
ing acknowledgement and termination commands from the mobile phone. This problem was
solved by correcting the timing between the mobile phone and the mote so the mobile phone
only would send ACK and END when it had received exactly 29 bytes of data. The commands
�ACK� and �END� was also changed to �A� and �E� to ease the communication �ow.

7.1.1 Command line interface

The following commands create a user friendly interface to the mote allowing the user to access
and to recon�gure the di�erent features in the mote program.

put string : The message which comes after the put command is stored in the bu�er to be
forwarded into the network.

64 7.1. MOTE PROTOCOL

buf : This command will print the number of packets contained in the bu�er and print the
payload of the next outgoing packet. If the bu�er is empty, a message will be displayed.

chaddr char : This command is used to change the current mote address to any desired
character.

moteset : This command print the mote address, its neighbors as well as its role in the
network: I, O or F.

ISM : To view the nRF settings: center frequency, frequency band and power, TX and RX
address and payload width, nRF address, CRC and clock, this command will print the
hexadecimal values for each byte in the nRF con�guration register.

role char : If this command is typed, it will change the mote roles in the network to I, O or F.

neighbors char char : This command is used to set the neighbors of the mote.

7.1.2 Debug information

The debug information displayed in Listings 7.1 and 7.2 are the output of the two end motes
in the network.

First, an Init message is sent initializing the connections: Sender mobile phone - input mote
and receiver mobile phone - output mote. The �rst message sent by the mobile phone into the
mote network is containing information about the type and the size of the payload data. Then,
the packet is sent. The �rst mote is transmitting an RTS message successfully received by the
last mote which responds with a CTS. The output mote then receives the payload packet, stores
it in the bu�er and send an ACK back. In the meantime, the output mote will also receive an
ACK from the receiver mobile phone proving that the packet was received correctly.

To convey the payload through the network, the �rst mote has to send again an RTS, but
collisions occur, so the RTS is retransmit, three times in this case, until is received by the last
mote. The payload packet is then conveyed through the network, using the same scheme as
before.

A timeout occurs, meaning that there are no more packets to send, so the �rst mote close the
Bluetooth connection with the sender mobile phone. When the receiver mobile phone has all
the packets, instead of sending an ACK to the last mote, it will send an END message closing
the connection.

Note that the motes are not allowed to read the payload.

Listing 7.1: Debug information for the input mote

I n i t r e c e i v ed
RTS header sent

7.1. MOTE PROTOCOL 65

Receive packet : Source : 2 Des t ina t i on : 1 Type :CTS
Source : 2 Des t inat i on : 1 Type :ACK
Payload packet was sent

RTS header sent
RTS header sent
RTS header sent
Receive packet : Source : 2 Des t ina t i on : 1 Type :CTS
Source : 2 Des t inat i on : 1 Type :ACK
Payload packet was sent

Bluetooth connect ion i s c l o s ed

Listing 7.2: Debug information for the output mote

I n i t r e c e i v ed

Receive packet : Source : 1 Des t ina t i on : 2 Type :RTS
CTS header sent
Source : 1 Des t inat i on : 2 Type :PAY
To put in bu f f e r : Source : 1 Des t ina t i on : 2 Type :PAY
New de s t i n a t i on address : Source : 1 Des t inat i on : M Type :PAY
Put in bu f f e r : Source : 2 Des t ina t i on : M Type :PAY
ACK header sent
Received ACK from mobile phone

Receive packet : Source : 1 Des t ina t i on : 2 Type :RTS
CTS header sent
Source : 1 Des t inat i on : 2 Type :PAY
To put in bu f f e r : Source : 1 Des t ina t i on : 2 Type :PAY
New de s t i n a t i on address : Source : 1 Des t inat i on : M Type :PAY
Put in bu f f e r : Source : 2 Des t ina t i on : M Type :PAY
ACK header sent

Mobile phone c l o s ed the connect ion

7.1.3 Protocol timing

The designed protocol states that a mote must backo�/wait when it overhears RTS and CTS
between other motes. The design in Chapter 5 however, does not specify how long time the

66 7.1. MOTE PROTOCOL

backo� should last. This section will describe the practical and theoretical determination of
the backo� time. The backo� time should be slightly di�erent for a received RTS compared to
a CTS, but for simplicity it is chosen to use the same backo� time in both cases.

The backo� time to follow an overheard RTS must be the time to send: CTS, Payload and
ACK. To calculate total time the following timing results is needed:

• Time to send RTS/CTS/ACK packet (3 bytes): 8bits/byte · 3bytes · 10−5s/bit = 0, 24ms

• Time to send payload packet (32 bytes): 8bits/byte · 32bytes · 10−5s/bit = 2, 56ms

• Time for nRF RX/TX mode switch: 0, 55ms [8]

• Time for standby/power up switch (The nRF must be in standby to receive new payload via
SPI) : 0, 65ms [8]

The actions needed to complete a transmission after a sent RTS is (data transmission between
nRF and dsPIC not included):

1. Switch to RX mode

2. Receive CTS packet

3. Switch to standby mode

4. Switch to TX mode

5. Send payload packet

6. Switch to RX mode

7. Receive ACK packet

The total theoretical backo� time can now be calculated:

BackoffT imetheoretical = 0, 55 + 0, 24 + 0, 65 + 0, 55 + 2, 56 + 0, 55 + 0, 24 = 5, 34

In practice, there is additional issues to be considered e.g. the data transmission between
nRF and dsPIC, and the processing time in the dsPIC. This is assumed to be very fast (<
1ms) and is of minor importance. The mote program is designed to do a carrier sense before
each transmission and this takes a random amount of time which is hard to estimate, but the
calculated theoretical time is believed to a quali�ed guess. This makes a total backo� time of
approximately 10ms.

Testing of the implementation in the development phase proved that 10ms was to short to avoid
collisions. The increased transmission time is caused by the printing of the debug information
shown in Listings 7.1 and 7.2. With the chosen baud rate of 57600bit/s, the time to transmit
one character is:

7.2. MOBILE PHONE APPLICATION 67

1
57600s/bit · 8bit/char = 0, 14ms

At every received packet, approximately 40 characters will be printed via USB. In the case of
40 characters, an additional 40 ·0.14ms = 5.6ms must be added. This leaves a practical backo�
time of approximately 20ms which works good in the implementation.

7.2 Mobile phone application

In the implementation of the mobile phone application a few changes have been made to improve
the system. It turns out that some garbage characters is written to the UART when the mobile
phone establish a connection to the Bluetooth module on the mote. To remove this garbage
the mobile phone needs to send a string terminated by \n to �ush the UART bu�er. The
initialization message should then be as follows:

• PREINIT\n

• INIT\n

7.2.1 Screenshots of the UI

The mobile phone application implemented in Python is split into two di�erent parts, a sender
and a receiver application. In Figure 7.1 text in selected as desired content and a text message
�Hello world!� is written in the UI. Then in Figure 7.2 a search for Bluetooth devices is
performed and a connection to the input mote is made and the message is sent to the network.
For the receiver side Figure 7.3 shows that the receiver is started and connected to the output
mote and afterwards the message is received correctly.

Figure 7.1: On the left �gure the user selects to write a text message, on the right a message is
written on the sender mobile phone

68 7.2. MOBILE PHONE APPLICATION

Figure 7.2: On the left �gure a Bluetooth search is performed, on the right the connection is
established and the message is sent into the network

Figure 7.3: On the left �gure the user is starting the receiver program, in the middle a Bluetooth
search is performed and on the right the mobile phone is connected to the mote and have received
the message �Hello world!�

Chapter 8

Test

In this chapter di�erent test approaches is described: First the mobile phone applications are
tested separately with a simulated network, then it is described how the collision avoidance
scheme can be tested and �nally the results from the acceptance test is outlined.

8.1 Test of the mobile phone application

In this section the test results from Appendix D is described. It is a test of the mobile phone
applications with a PC simulating the mote network. The results of the test can be seen in
Table 8.1.

Case Test Result

1 Sending text Passed
2 Sending image Passed
3 Sending audio Passed

Table 8.1: Results of the test with the mobile applications and simulated mote network

This shows that both text, image, and audio �les have been sent from the �rst to the second
mobile phone through the simulated network and in all cases the �le has been correctly received.

8.2 Test of the collision avoidance scheme

The collision avoidance scheme (RTS/CTS) plays a major role in the implemented protocol and
therefore it is essential to discuss how it can be tested that the scheme can avoid the hidden
terminal problem as well as limiting the numbers of collisions in the network. One way to test

70 8.3. ACCEPTANCE TEST

this could be to connect each mote to a PC and view the debug information. To make it possible
to debug, the communication �ow needs to be delayed (e.g. 5 seconds) so that it is possible to
see each operation taking place in the network with a human eye. To test whether the protocol
avoids the hidden terminal problem the nodes needs to be placed as it is described in the network
scenario in Section 4.1. This test is hard to do because the transmitting/receiving range for
the motes is di�erent due to inequality in the calibration of the antennas. This problem could
be solved by adjusting the nRF power settings on the motes or by recalibrating the antennas.
Because of the limited project period this test is not performed.

The expected results of this test in the scenario of Figure 4.1 with transmission between mote
2 and 3 would be:

1. Mote 2 sending RTS

2. Mote 1 receiving RTS and printing "backo�"

3. Mote 3 receiving RTS and sending CTS

4. Mote 4 receiving CTS and printing "backo�"

5. Mote 2 and 3 exchanges payload and ACK

6. Either mote 2 or 3 will try to send and the neighbors will backo�

8.3 Acceptance test

In this section the results from the acceptance test are discussed. This is done in order to
conclude whether or not the system complies with the requirements speci�cation stated in
Chapter 3. The acceptance test speci�cation can be seen in Appendix A.

8.3.1 System acceptance test

The system acceptance test is testing the overall system functionality. In Table 8.2 the results
from these tests are stated.

8.3. ACCEPTANCE TEST 71

Case Test Result

1 Number of devices in the system Passed
2 Bluetooth module in the motes Passed
3.a Text transfer Passed
3.b Picture transfer Passed
3.c Audio transfer Passed

Table 8.2: System acceptance test results

The acceptance tests performed on the overall system veri�es that the system complies with
the requirements.

8.3.2 Mote protocol acceptance test

The mote protocol acceptance test is testing the di�erent aspects regarding the protocol. Table
8.3 summarize the results from these tests.

Case Test Result

1 1-persistent carrier detecting Passed
2 Collision avoidance (RTS/CTS) scheme Passed
3 Acknowledgement packets (ACK) Passed
4 Retransmission of RTS/CTS exchange

after ACK timeout
Passed

5 Put packet longer than 29 bytes in a
bu�er

Passed

6 Header information Passed
7 Typing ISM Passed
8 Maximum transmitting range between

the motes
Failed

9 Power supply of the motes Passed
10 Connection between mobile phones and

motes
Passed

11 Convey message Passed
12 Stress test while sending long message Passed

Table 8.3: Mote protocol acceptance test results

The acceptance tests performed on the mote protocol veri�es that the protocol almost complies
with the requirements. Test case 8 is stating that the motes should be out of range if the

72 8.3. ACCEPTANCE TEST

distance between them are above 50 cm. The implemented maximum transmitting range is 40
cm, but this range is varying from mote to mote due to inequality in the calibration of the
antennas. This means that one mote is able to transmit or receive at a range of 1 m while
another one only is capable of a range of 20 cm.

8.3.3 Mobile phone application acceptance test

This acceptance test is testing the functionality of the mobile phone applications. Table 8.4
summarize the results from these tests.

Case Test Result

1 Mobile phone and mote in range Passed
2 Sender and receiver applications Passed
3 Sender menu Passed
4 Receiver menu Passed
5 Sender functions for all �le types Passed
6 Receiver functions Passed
7 Data splitting Passed

Table 8.4: Mobile phone application acceptance test results

The acceptance tests performed on the mobile phone applications veri�es that the applications
complies with the requirements.

8.3.4 Acceptance test conclusion

The acceptance test has been executed with a satisfying result. The requirements of Chapter
3 is full�lled except for Requirement 8 to the mote protocol. The reason for this failure is
hardware related and can not corrected in the software. Thus the implementation is correct in
respect to the requirements speci�cation.

Chapter 9

Conclusion

The main purpose of this project was to implement a MAC protocol for the ISM module of the
second version of the mote developed by Aalborg University. This creates a basis of a network
which can be used by e.g. mobile phones to exchange data and extend the Bluetooth range.

Through the analysis of di�erent MAC protocols for wireless networks, di�erent channel sharing
mechanisms were examined, including static allocation methods like TDMA and FDMA, the
Aloha approach, various kinds of carrier sensing protocols and collision avoidance schemes.
Some of the problems of the the wireless domain were also investigated i.e. the hidden and
exposed terminal problems and it is shown that the collision avoidance schemes can help solving
these problems.

Based on the analysis it was chosen to design and implement a MAC protocol that can minimize
collisions in the network. Also it is desired to make a robust and simple protocol with no loss of
data. For this a collision avoidance scheme is used in combination with acknowledgements and
carrier sensing (RTS/CTS/DATA/ACK). The carrier sensing is also needed in the unlicensed
ISM band where transmissions between other devices can easily occur. It was also chosen
to develop a mobile phone application which is used to exchange text, image and audio �les
through the mote network implementing the MAC protocol.

The topology of the mote network is chosen to be a line which is a simple topology with �xed
routing. This makes it possible to examine the performance of the protocol dealing with the
hidden terminal problem. The network supports a unidirectional �ow of data from one mobile
phone to another. The program for the motes in the network has been designed to ful�ll the
requirements speci�cation and to run on the given mote hardware. Two programs have been
designed for the mobile phone application: A sender program for creating a �le to be sent into
the network according to the speci�ed mobile to mote interface, and a receiver program to
receive and read the transmitted �le.

The implementation of the mote program was done in C, while the mobile phone application

74

was done in Python. Some minor changes were made compared to the design to optimize the
performance of the Bluetooth connection between the motes and mobile phones. A command
line interface was also implemented for easy debugging and testing purposes. The timing of
the collision avoidance scheme has also been calculated and estimated to make an optimum
implementation.

The protocol and the mobile phone application were tested with four motes and two mobile
phones. By the test it was concluded that the system works, accomplishing all the requirements
made. A user can send and receive text, image and audio �les through a robust mote network
without duplication or loss of packets. One of the requirements did not pass the acceptance
test, but the error is in the antenna calibration and is not software related. The avoidance
of the hidden terminal problem has not been tested due to the hardware con�guration of the
mote antennas and limited project period. This should however be possible to do and would
optimize the MAC protocol even further.

Chapter 10

Future perspectives

In this chapter ideas and perspectives for the future developments and enhancements for the
wireless mote network and MAC protocol will be presented. The chapter is divided into two
sections describing enhancements for the protocol and mobile phone application respectively.

Enhancements for the protocol

Connection establishment mote-mobile phone
To be able to receive a message, the mobile phone must initialize a Bluetooth connection with
the output mote. In future development the output mote should instead be able to search for
the receiver mobile phone and to connect to it. This can be done by programming the Bluetooth
module on the motes.

Bidirectional network
When the sender mobile phone wants to transmit a message, the packets are conveyed through
the network in an unidirectional way, this means that the sender is not informed about the
success/failure of the transmission. By introducing a bidirectional communication �ow it will
be possible to exchange data both ways. This could enhance the protocol so it will be possible
for the receiver to inform the sender about success/failure like in TCP. This could also ensure
data integrity because the receiver will be able to send acknowledgements for each packet. By
having a bidirectional network it is also possible to have applications like chat or walkie-talkie.

Broken links and dynamic routing
If one mote situated on position M in the network is removed or is put out of the range of
its neighbors or simply does not work anymore, the mote in position M-1 will continuously
send an RTS message. Instead, the protocol can be improved to solve this problem by sending
a message back to the mobile phone informing the last one that there is a problem, and the

76

message did not reach its destination. Another approach is to solve this problem by introducing
dynamic routing schemes. If there is a broken link the protocol should �nd another route for
the packet. The next step to enhance the routing protocol could be to implement a program
calculating the best path for each packet.

Add sensor modules to the motes
The motes do not have any sensing capabilities so a future enhancement in the hardware is
to add sensor modules to the current motes which can be programmed to collect temperature,
humidity, light, pressure, chemical substances, or vibration information, and report it to the
mobile phone. In this way the protocol will be suited for direct deployment in a �nal system.

Enhancements for the mobile phone application

One mobile application containing sender and receiver part
To have a bidirectional network the mobile phone application should be able to send and receive
at the same time. To make this possible the application needs to be implemented in one program
capable of running both a sender and a receiver thread.

More �le types supported
In future development the mobile phone application will be able to send/receive more �le types
e.g. video �les. Mp3 �le support could also be implemented to decrease the transmission time
of audio �les.

GUI
The GUI of the application could also be improved to handle incoming sensor measurements
by using pop-up messages.

Bibliography

[1] Dhvanish Chokshi. Design of a MAC Protocol with Need-Based Scheduling for Wireless
Sensor Networks. Available at: http://www.csuohio.edu/ece/theses/2005/chokshi.
pdf, 2005.

[2] Phil Karn. MACA - A New Channel Access Method for Packet Radio. Available at:
http://people.qualcomm.com/karn/papers/maca.html, 1990.

[3] Microchip. dsPIC33F Family Data Sheet. Available at: Availableat:http://ww1.
microchip.com/downloads/en/DeviceDoc/70165E.pdf, 2007. Accessed 1/4-2007.

[4] Petar Popovski. Link layer protocols and multiple access. Available at: http://kom.aau.
dk/%7Epetarp/Teaching/mm2_F06.pdf. Accessed 24/4-2007.

[5] Ramjee Prasad. Universal Wireless Personal Communications. Artech House, 1998. ISBN:
0-89006-958-1.

[6] Raphael Rom. Multiple Acces Protocols. Springer-Verlag, 1989.

[7] Jochen Schiller. Mobile Communications. Addison-Wesley, 2000. ISBN: 0-201-39836-2.

[8] Nordic semiconductor. Product speci�cation. Single chip 433/868/915 MHz Transceiver
nRF905. Available at: http://www.semiconductorstore.com/pdf/NRF905%20%20%20%
20%20%20%20%20%20.pdf, 2004. Accessed 1/4-2007.

[9] Bluetooth SIG. Architecture - Data Transport. http://bluetooth.com/Bluetooth/
Learn/Works/Data_Transport_Architecture.htm. Accessed 29/5-2007.

[10] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, 4th edition, 2003. ISBN:
0-13-038488-7.

[11] Scott Shenker Vaduvur Bharghavan, Alan Demers and Lixia Zhang. MACAW: A Medium
Access Protocol for Wireless LAN's. Available at: http://pdos.csail.mit.edu/decouto/
papers/bharghavan94.pdf, 1994.

http://www.csuohio.edu/ece/theses/2005/chokshi.pdf�
http://www.csuohio.edu/ece/theses/2005/chokshi.pdf�
http://people.qualcomm.com/karn/papers/maca.html�
Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/70165E.pdf�
Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/70165E.pdf�
http://kom.aau.dk/%7Epetarp/Teaching/mm2_F06.pdf�
http://kom.aau.dk/%7Epetarp/Teaching/mm2_F06.pdf�
http://www.semiconductorstore.com/pdf/NRF905%20%20%20%20%20%20%20%20%20.pdf�
http://www.semiconductorstore.com/pdf/NRF905%20%20%20%20%20%20%20%20%20.pdf�
http://bluetooth.com/Bluetooth/Learn/Works/Data_Transport_Architecture.htm�
http://bluetooth.com/Bluetooth/Learn/Works/Data_Transport_Architecture.htm�
http://pdos.csail.mit.edu/decouto/papers/bharghavan94.pdf�
http://pdos.csail.mit.edu/decouto/papers/bharghavan94.pdf�

78 BIBLIOGRAPHY

[12] John Heidemann Wei Ye and Deborah Estrin. An Energy-E�cient MAC Protocol for Wire-
less Sensor Networks. Available at: http://www.isi.edu/~weiye/pub/smac_infocom.
pdf, 2002.

[13] Wikipedia. ALOHAnet. http://en.wikipedia.org/wiki/ALOHAnet. Accessed 24/4-2007.

http://www.isi.edu/~weiye/pub/smac_infocom.pdf�
http://www.isi.edu/~weiye/pub/smac_infocom.pdf�
http://en.wikipedia.org/wiki/ALOHAnet�

Appendix A

Acceptance test speci�cation

The acceptance test speci�cation describes how to verify the requirements speci�cation in Chap-
ter 3. The test speci�cation states a case for verifying each requirement. The cases are ordered
under the same sections as in the requirements speci�cation and the case number corresponds
to the requirement number.

System requirements

Case 1

Actions: Count the number of motes and mobile phones in the system.

Success criteria: There are 4 or more motes and 2 mobile phones.

Case 2

Actions: Verify that 2 of the motes have a Bluetooth module mounted on them.

Success criteria: 2 and only 2 of the motes have Bluetooth modules.

Case 3.a

Actions:

1. Verify that mobile phones and motes are activated.

2. Start the application on each mobile phone and establish a connection to a mote from each
phone.

80

3. Send a text message from the sender phone.

Success criteria: The message from the sender phone is received correctly at the receiver
phone.

Case 3.b

Actions:

1. Verify that mobile phones and motes are activated.

2. Start the application on each mobile phone and establish a connection to a mote from each
phone.

3. Send a image �le from the sender phone.

Success criteria: The �le from the sender phone is received correctly at the receiver phone.

Case 3.c

Actions:

1. Verify that mobile phones and motes are activated.

2. Start the application on each mobile phone and establish a connection to a mote from each
phone.

3. Send a audio �le from the sender phone.

Success criteria: The �le from the sender phone is received correctly at the receiver phone.

Mote and protocol requirements

To verify the requirements to the protocol, a debug functionality must be implemented. This
must allow the tester to see what is happening on each mote e.g. as text messages printed
through the USB interface on the motes. In the following test cases, it is assumed that the motes
are activated and running the protocol program. When referring to print results, additional
debugging information may be printed as well.

81

Case 1

Actions: Put a packet in the bu�er of a mote either via the USB interface or the mobile phone
application.

Success criteria:

1. "Packet put in bu�er" is printed.

2. "Sending packet" is printed.

3. "CD" (Carrier Detect) is printed a random number of times (maybe even zero times) to
indicate the continuous carrier sensing.

4. "Sending packet" is printed.

Case 2

Actions: Put a packet in the bu�er of a mote either via USB interface or mobile phone
application.

Success criteria:

1. "Packet put in bu�er" is printed.

2. "RTS sent" is printed with source and destination address.

3. "CTS received" is printed with source and destination address reversed.

Case 3

Actions: Put a packet in the bu�er of a mote either via USB interface or mobile phone
application.

Success criteria:

1. "Payload sent" is printed.

2. "ACK received" or "ACK timeout. Sending again" is printed.

3. If "ACK received" the payload packet must be in the bu�er of the receiver mote.

Case 4

Retransmission of RTS/CTS exchange after ACK timeout.

Actions:

82

1. Put a packet in the bu�er of a mote.

2. "RTS sent" and "CTS received" is printed.

3. Move the receiver mote out of the transmission range of the sender mote.

Success criteria:

1. "Payload sent" is printed

2. "ACK timeout. Sending again" is printed 3 times

3. "RTS sent" is printed again

Case 5

Actions: Put a packet in the bu�er via the USB interface as a string containing more than 29
characters.

Success criteria: Only the �rst 29 characters are sent.

Case 6

Actions: Put a packet in the bu�er of one mote via the USB interface, while the others are
deactivated, and type "buf".

Success criteria: The packet is shown with 3 bytes of header information.

Case 7

Actions: Type "ISM" via the USB interface.

Success criteria: The ISM interface name is printed as 4 characters (= 32 bits).

Case 8

Actions:

1. Move a receiving mote more than 50 cm away from the sending mote.

2. Put a packet in the bu�er of a the sending mote.

Success criteria: "RTS sent" is printed continuously, meaning out of range.

83

Case 9

Actions: Verify that the motes are connected to a power supply.

Success criteria: The power supply of the motes is either a battery or a static power supply
e.g. USB connection to a laptop.

Case 10

Actions: Use the mobile phones application to connect to a Bluetooth mote.

Success criteria: "Init received" is printed via the USB interface of the mote.

Case 11

Actions: Send a message from the mobile phones through the network.

Success criteria: The �le is received correctly and can be displayed to the user.

Case 12

Actions:

1. Send a long text message (e.g. 1000 characters) with di�erent sentences.

2. While transmitting, move the motes randomly in and out of range of its neighbors.

3. Wait for transmission to �nish.

Success criteria: The correct message is shown on the receiver mobile phone without any
redundant sentences.

Mobile phone application requirements

Case 1

Actions: Search for Bluetooth devices on the phone.

Success criteria: At least one of the Bluetooth motes is discovered.

Case 2

Actions: Check the number of created application it is possible to choose between.

Success criteria: It is possible to choose between a sender and receiver application.

84

Case 3

Actions: Start the "Sender" application on the phone.

Success criteria: The Sender main menu is displayed.

Case 4

Actions: Start the "Receiver" application on the phone.

Success criteria: The Receiver main menu is displayed.

Case 5

Actions:

1. Start the sender application on the phone.

2. Open the �le types menu.

3. Create or load the �le.

4. Search for Bluetooth devices.

5. Select a mote device.

6. Send the �le.

7. Repeat for all �le types.

Success criteria:

1. The menu allows the user to choose data type.

2. The �le is created and saved in the directory c:\\sensor\\�les.

3. The application starts a device search.

4. A list of devices in range is shown.

5. "Connection established" is shown on the mobile phone.

6. "Sending message" is shown on the mobile phone.

85

Case 6

Actions:

1. Start the receiver application on the phone.

2. Search for Bluetooth devices.

3. Select a mote device.

4. Send a message from the sender phone.

Success criteria:

1. The application starts a device search.

2. A list of devices in range is shown.

3. "Connection established" and "Listening for messages" is shown on the mobile phone.

4. The receiver starts receiving the message and shows the content when transmission is com-
plete.

Case 7

Actions: Send a message from the sender phone.

Success criteria: The number of packets is shown on the display. This number corresponds
to 1

29 of the total message size.

Appendix B

nRF ShockBurst �ow charts

This appendix contains �owcharts from the nRF905 datasheet[8] showing how the transceiver
works in RX and TX mode.

PRODUCT SPECIFICATION
nRF905 Single Chip 433/868/915 MHz Radio Transceiver

Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +4772898900 -Fax +4772898989Revision: 1.1 Page 12 of 36 June 2004

SPI - programming
uController loading ADDRand PAYLOAD data(Configuration register ifchanges since last TX/RX)

NO

YES

nRF ShockBurst TX
Generate CRC and preambleSending packageDR is set high when completed

Transmitteris poweredup

TRX_CE= HI ?
AUTO_RETRAN= HI ?

YES

NO
YES

NO

ADDR PAYLOAD

Data Package

Bit in configurationregister

TRX_CE= HI ?

Radio in Standby
TX_EN = HIPWR_UP = HITRX_CE = LO

ADDR PAYLOAD CRCPre-amble
DR isset lowafter pre-amble

Figure 4 Flowchart ShockBurstTM transmit of nRF905.
NB: DR is set low under the following conditions after it has been set high:

• If TX_EN is set low
• If PWR_UP is set low

Figure B.1: Flow chart showing the nRF905 ShockBurst transmit mode[8]

87PRODUCT SPECIFICATION
nRF905 Single Chip 433/868/915 MHz Radio Transceiver

Main office: Nordic Semiconductor ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +4772898900 -Fax +4772898989Revision: 1.1 Page 14 of 36 June 2004

Figure 5 Flowchart ShockBurstTM receive of nRF905.

NO

YES
Receiver ispowered up

NO

YES

Receivingdata

ReceiverSensing for incomming dataCD is set high if carrier

AM is sethigh

NO

DR high isset high

Radio entersSTBY

MCU clocks out payload viathe SPI interface

DR and AM are set lowYES

YES

NOAM is set low

Radio in StandbyTX_EN = LOPWR_UP = HI

TRX_CE= HI ?

CorrectADDR?

CorrectCRC?

TRX_CE = HI ?

PAYLOAD

Data Package

ADDR PAYLOAD CRCPre-amble

RX RemainsOn

MCU clocks out payload viathe SPI interface

DR and AM are set low

Figure B.2: Flow chart showing the nRF905 ShockBurst receive mode[8]

Appendix C

Bluetooth send/receive switching
test

The mobile phones have to switch from receiving mode to sending mode or vice-versa many
times. This happens because the size of a packet is only 29 bytes, therefore for quite big �les
a lot of packets will be created and for each packet sent/received a request/acknowledgement
packet will be received/sent. It is necessary that the the system does not become slow because
of the time to switch from a function to another one. In order to test if this speed is fast enough
a little test program has been implemented in both mobile phones: A phone sends a packet and
waits for a packet with the same size, the other phone does the opposite procedure, it waits
for a packet and after receiving it sends another packet with the same size. This procedure is
repeated continuously. The trials are done within di�erent scenarios:

• Packet size: 1 byte or 29 bytes

• Loops: 10, 100 or 1000 loops

For each combination three measurements has been done, the results are shown in Figure C.1:

89

10 Loop

1000 Loop

100 Loop

0,28125

18,29687

18,14062

18,20312

1,93750

1,92187

1,90625

0,28125

0,21875

0,29687

18,04687

18,92187

18,03125

1,93750

1,96875

1,98437

0,28125

0,28125

1 Byte 29 Byte

Figure C.1: Test results of the switching in seconds

The mean of each scenario is calculated and shown in Figure C.2.

10 Loops

100 Loops

1000 Loops

1 Byte 29 Byte

0,26041

1,92187

18,21353

0,28645

1,96354

18,99999

Figure C.2: The mean time of the switching in seconds

The mean time spent for a loop, working out the values in Figure C.2, is 22 ms.

In Section 7.1.3 is shown that the time for sending one packet to a mote to another one is about
5 ms plus the delay to sense the carrier, in total is approximately 20 ms. This value is very
close to the time calculated in this test for sending a packet from the mobile phone to a mote.
The conclusion is that the mobile phone application creates an acceptable delay for the whole
system.

Appendix D

Mobile phone application test

The test described in this section has been carried out to prove that the mobile phone application
works as it is speci�ed in the design. This has to be done before testing the entire system. In
order to obtain this result a test application has been created to simulate the mote network.
Figure D.1 shows the used testing scenario.

Figure D.1: Mobile phones application test scenario.

The applications running in the two mobile phones are the �nal applications. The test applica-
tion running in the PC is implemented in Python 2.5, and it works as it is following explained
:

• It opens two sockets one waiting for a connection from the �rst mobile phone, and one
waiting from a connection from the second mobile phone.

• It waits for packets from the �rst mobile phone

• For each packet received:

1. It forwards the packet to the second mobile phone through the second opened socket.

2. It waits for an ACK packet from the second mobile phone.

3. It sends a REQ packet to the �rst mobile phone.

91

The test program run in the PC, do not have to store the data in a bu�er before it sends.
Di�erently from how it is done in the mote network, each packet is requested only when the
previous one has already been received from the receiver mobile phone, and an acknowledgement
has been sent. However the mobile phone applications do not feel any di�erences, they work
exactly as they would work with the mote network and therefore they are correctly tested.

Appendix E

Transmission range test

To �nd the optimal distance between the motes in the chosen network scenario and to avoid
the hidden terminal problem as well limitting the number of collisions a range test of motes at
di�erent power settings has been performed.

The setup of the test was that the motes where in line of sight and the transmitting mote was
sending a packet each second. The di�erent transmission and receiving settings was as follows:

• Transmission power: -10 dBm, 2 dBm, 6 dBm or 10 dBm

• Receiver sensitivity: Normal sensitivity or reduced sensitivity

These settings resulted in 8 di�erent tests, where the success criteria was that 10 packets where
continuously received which is assumed to be a stable link optimal for the chosen network
scenario. The test results can be seen in Table E.1

TX power High RX Low RX
-10 1 m 0.40 m
2 7.5 m 1 m
6 13 m 6 m
10 24 m 9 m

Table E.1: The result of the transmission range test

Appendix F

Motes hardware schematics

This appendix includes the hardware schematics of the mote used in the project. They are
shown in the following pages.

55

44

33

22

11

D
D

C
C

B
B

A
A

P
G

C
1

P
G

D
1

U
2R

X
U

2TX

M
C

LR

U
1TX

U
1R

X

M
C

LR
P

G
D

1
P

G
C

1

M
C

LR

+3.3V
G

N
D

+5V
G

N
D

U
2TX

U
2R

X

G
N

D

G
N

D

G
N

D

G
N

D

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V
+3.3V

+5V

+5V

V
S

S

+3.3V
H

igh

Low

+5V
+5V

+3.3V

V
C

C
V

D
D

+3.3V

+3.3V

+5V

+5V

+5V

+3.3V
+3.3V

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

M
AIN

 SEN
SO

R
 BO

AR
D

<M
obileD

evices>
<A

A
LB

O
R

G
 U

N
IV

E
R

S
ITY

>
<O

rgA
ddr3>

<O
rgA

ddr4>

A
2

2
2

Thursday, February 15, 2007
Tuesday, January 30, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

M
AIN

 SEN
SO

R
 BO

AR
D

<M
obileD

evices>
<A

A
LB

O
R

G
 U

N
IV

E
R

S
ITY

>
<O

rgA
ddr3>

<O
rgA

ddr4>

A
2

2
2

Thursday, February 15, 2007
Tuesday, January 30, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

M
AIN

 SEN
SO

R
 BO

AR
D

<M
obileD

evices>
<A

A
LB

O
R

G
 U

N
IV

E
R

S
ITY

>
<O

rgA
ddr3>

<O
rgA

ddr4>

A
2

2
2

Thursday, February 15, 2007
Tuesday, January 30, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

U
S

B I
C
D
2

D
E
B
U
G
G
E
R
/
P
R
O
G
R
A
M
M
E
R

R
eset

G
nd

+3.3V
V

in

Jumper to supply the system from the USB +5V supply.

O
BS! D

o not connect with an external +5v supply.
s
o
m
e

u
s
b

c
a
n

d
e
l
i
v
e
r

o
p

t
o

5
0
0
m
A
,

a
n
d

s
o
m
e

c
a
n

o
n
l
y

g
i
v
e

1
0
0
m
A
.

Jumper 2-3 supply from +5V
Jumper 1-2 supply from battery

U
S
B

t
o

R
S
2
3
2

D
S
P
I
C
3
3
F
J
2
5
6

D
S
P

S
M
A
R
T

L
I
T
H
I
U
M

P
O
L
Y

B
A
T
T
E
R
Y

C
H
A
R
G
E
R

M
A
X

3
0
0
m
A

O
U
T

P
O
W
E
R

L
I
N
E
S

+
3
.
3
V

L
O
W

D
R
O
P

R
E
G
U
L
A
T
O
R

0
.
5
V
,

1
.
0

A

M
A

IN
 SEN

SO
R BO

A
RD

 REV 2.0

M
C
L
R

R
E
S
E
T

C
29

100nF
C

29
100nF

Y
2

22.118M
hz

Y
2

22.118M
hz

J4
JU

M
P

E
R

J4
JU

M
P

E
R

1
2

R
1

10k
R

1
10k

+
C

1
2.2uF

+
C

1
2.2uF

D
3

1N
4148

D
3

1N
4148

U
1A
A

T3681

U
1A
A

T3681

EN
1

ISET
2

VBAT
3

VC
H

4
STAT

5
G

N
D

6
G

N
D

7
G

N
D

8

C
20

22pf
C

20
22pf

D
4

LE
D

D
4

LE
D

J3
JU

M
P

E
R

J3
JU

M
P

E
R

1
2

C
21

22pf
C

21
22pf

U
4

U
4

C
O

FS/R
G

15
1

VD
D

2
AN

29/R
E5

3
AN

30/R
E6

4
AN

31/R
E7

5
AN

16/T2C
K/T7C

K/R
C

1
6

AN
17/T3C

K/T6C
K/R

C
2

7
AN

18/T4C
K/T9C

K/R
C

3
8

AN
19/T5C

K/T8C
K/R

C
4

9
SC

K2/C
N

8/R
G

6
10

SD
I2/C

N
9/R

G
7

11
SD

02/C
N

10/R
G

8
12

M
C

LR
13

SS2/C
N

11/R
G

9
14

VSS
15

VD
D

16
TM

S/R
A0

17
AN

20/IN
T1/R

A12
18

AN
21/IN

T2/R
A13

19
AN

5/C
N

7/R
B5

20
AN

4/C
N

6/R
B4

21
AN

3/C
N

5/R
B3

22
AN

2/SS1/C
N

4/R
B2

23
PG

C
3/EM

U
C

3/AN
1/C

N
3/R

B1
24

PG
D

3/EM
U

D
3/AN

0/C
N

2/R
B0

25
PG

C
1/EM

U
C

1/AN
6/O

C
FA/R

B6
26

PG
D

1/EM
U

D
1/AN

7/R
B7

27
VR

EF-/R
A9

28
VR

EF+/R
A10

29
AVD

D
30

AVSS
31

AN
8/R

B8
32

AN
9/R

B9
33

AN
10/R

B10
34

AN
11/R

B11
35

VSS
36

VD
D

37
TC

K/R
A1

38
U

2R
TS

39
U

2C
TS

40

AN
13/R

B13
42

AN
14/R

B14
43

AN
15/O

C
FB/C

N
12/R

B15
44

VSS
45

VD
D

46
IC

7/U
1C

TS/C
N

20/R
D

14
47

IC
8/U

1R
TS/C

N
21/R

D
15

48
U

2R
X/C

N
17/R

F4
49

U
2TX/C

N
18/R

F5
50

U
1TX/R

F3
51

U
1R

X/R
F2

52
SD

O
1/R

F8
53

SD
I1/R

F7
54

SC
K1/IN

TO
/R

F6
55

SD
A1/R

G
3

56
SC

L1/R
G

2
57

SC
L2/R

A2
58

SD
A2/R

A3
59

TD
I/R

A4
60

TD
O

/R
A5

61
VD

D
62

O
SC

1/C
LKIN

/R
C

12
63

O
SC

2/C
LKO

/R
C

15
64

VSS
65

IN
T3/R

A14
66

IN
T4/R

A15
67

IC
1/R

D
8

68
IC

2/R
D

9
69

IC
3/R

D
10

70
IC

4/R
D

11
71

O
C

1/R
D

0
72

PG
D

2/EM
U

D
2/SO

SC
I/C

N
1/R

C
13

73
PG

C
2/EM

U
C

2/SO
SC

O
/T1C

K/C
N

0/R
C

14
74

VSS
75

O
C

2/R
D

1
76

O
C

3/R
D

2
77

O
C

4/R
D

3
78

IC
5/R

D
12

79
IC

6/C
N

19/R
D

13
80

O
C

5/C
N

13/R
D

4
81

O
C

6/C
N

14/R
D

5
82

O
C

7/C
N

15/R
D

6
83

O
C

8/C
N

16/R
D

7
84

VD
D

C
O

R
E

85
VD

D
86

C
1R

X/R
F0

87
C

1TX/R
F1

88
C

2TX/R
G

1
89

C
2R

X/R
G

0
90

AN
22/C

N
22/R

A6
91

AN
23/C

N
23/R

A7
92

AN
24/R

E0
93

AN
25/R

E1
94

C
SC

K/R
G

14
95

C
SD

I/R
G

12
96

C
SD

O
/R

G
13

97
AN

26/R
E2

98
AN

27/R
E3

99
AN

28/R
E4

100

AN
12/R

B12
41

C
24

100nF
C

24
100nF

U
7C
P

2102

U
7C
P

2102

D
C

D
1

R
I

2

G
N

D
3

D
+

4
D

-
5

VD
D

6

R
EG

IN
7

VBU
S

8

R
ST

9

NC 10SU
SPEN

D
11

SU
SPEN

D
12

NC 13NC 14NC 15NC 16NC 17NC 18NC 19NC 20NC 21NC 22

C
TS

23
R

TS
24

R
XD

25

TXD
26

D
SR

27
D

TR
28

GND29

GND30

+
C

17
0.47uF

+
C

17
0.47uF

R
22

0 R
22

0

C
13

100nF
C

13
100nF

+
C

2
10uF

+
C

2
10uF

R
15

560R
R

15
560R

D
5

LE
D

D
5

LE
D

J1JU
M

P
E

R

J1JU
M

P
E

R

1
2

R
3

1k R
3

1k

+
C

18
33uF

+
C

18
33uF

C
27

100nF
C

27
100nF

Lithium
 P

oly
B

A
TTE

R
Y

Lithium
 P

oly
B

A
TTE

R
Y

C
19

100nF
C

19
100nF

R
16

560R
R

16
560R

+
C

14
1uF

+
C

14
1uF

J5

JU
M

P
E

R

J5

JU
M

P
E

R

1
2

S
W

1
S

W
1

C
28

100nF
C

28
100nF

C
15

100nF
C

15
100nF

C
N

1
C

N
-U

S
B

C
N

1
C

N
-U

S
B

12345

6
7
8
9

10
11

J6H
E

A
D

E
R

 50

J6H
E

A
D

E
R

 50

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

J2

C
O

N
N

 P
LU

G
 3x2

J2

C
O

N
N

 P
LU

G
 3x2

246

135

C
12

100nF
C

12
100nF

C
16

100nF
C

16
100nF

LM
3940_+3.3V

_S
O

T223
U

8
LM

3940_+3.3V
_S

O
T223

U
8

IN
1

O
U

T
3

GND2

GND4

C
26

100nF
C

26
100nF

J9Jum
per

J9Jum
per

33 2
2

1 1

J8C
O

N
6

J8C
O

N
6

1 2 3 4 5 6

R
10

10K
R

10
10K

+
C

8
1uF 16V

+
C

8
1uF 16V

D
1

LE
D

D
1

LE
D

J7H
E

A
D

E
R

 50

J7H
E

A
D

E
R

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

55

44

33

22

11

D
D

C
C

B
B

A
A

P
W

R
_C

E

C
D

C
D

D
R

D
R

M
O

S
I

C
S

N

A
M

A
M

C
S

N

P
W

R
_U

P
P

W
R

_C
E

TX
_E

N

S
C

K
M

IS
O

M
O

S
I

TX
_E

N

P
W

R
_U

P

S
C

K

M
IS

O

U
1TX

G
N

D
+3.3V

G
N

D
+5V

U
1R

X

U
1TX

U
1R

X

+3.3V

+3.3V

+3.3V

+3.3V
+3.3V

+3.3V

+3.3V
+3.3V

+3.3V
+5V

V
S

S

+3.3V
H

igh

Low

V
C

C
V

D
D

+5V

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

<W
IR

ELESS SEN
SO

R
 BO

AR
D

>

<M
obileD

evices>
<O

rgA
ddr2>

<O
rgA

ddr3>
<O

rgA
ddr4>

A
2

1
2

Thursday, February 15, 2007
S

unday, January 21, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

<W
IR

ELESS SEN
SO

R
 BO

AR
D

>

<M
obileD

evices>
<O

rgA
ddr2>

<O
rgA

ddr3>
<O

rgA
ddr4>

A
2

1
2

Thursday, February 15, 2007
S

unday, January 21, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

Title:

S
ize:

R
ev:

D
ate m

odify:
S

heet:
of

D
ate create:

D
esign file:

<2.0>

<W
IR

ELESS SEN
SO

R
 BO

AR
D

>

<M
obileD

evices>
<O

rgA
ddr2>

<O
rgA

ddr3>
<O

rgA
ddr4>

A
2

1
2

Thursday, February 15, 2007
S

unday, January 21, 2007
C:\DOCUMENTS AND SETTINGS\BK\MY DOCUMENTS\ORCAD\DSPIC33FJ256GP710\SENSORBOARD REV2\SENSOR BOARD2.DSN

If not used to low

W
IRELESS SEN

SO
R BO

A
RD

 REV 2.0

P
O
W
E
R

L
I
N
E
S B
L
U
E
T
O
O
T
H

M
O
D
U
L
E

R
F

T
R
A
N
S
C
E
I
V
E
R

4
3
3
M
h
z

+
3
.
3
V

L
O
W

D
R
O
P

R
E
G
U
L
A
T
O
R

0
.
5
V
,

1
.
0

A

R
20

10K
R

20
10K

+
C

43
0.47uF

+
C

43
0.47uF

C
31

6,8pF
C

31
6,8pF

+

C
45

33uF

+

C
45

33uF

J16

JUMPER J16

JUMPER 12

J11

H
E

A
D

E
R

 50

J11

H
E

A
D

E
R

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

C
32

3.9pF
C

32
3.9pF

J13
JU

M
P

E
R

J13
JU

M
P

E
R

1
2

J12
JU

M
P

E
R

J12
JU

M
P

E
R

1
2

J15

JUMPER J15

JUMPER 12

R
230

R
230

C
30

4.7pF
C

30
4.7pF

C
33

27pF

C
33

27pF

J14JUMPER J14JUMPER 12

R
18

22k
R

18
22k

C
41

4.7nF
C

41
4.7nF

U
11

B
lueN

iceC
O

M
4

U
11

B
lueN

iceC
O

M
4

GND1

O
P3

2

PG
7

3

SC
LK

4
SFS

5
SR

D
6

O
P5

8
O

P4
9

VCC 10

N
C

11

PG
6

12

R
X

13

TX
14

R
TS

15
C

TS
16

R
ESET

17

STD
7

C
40

33pF
C

40
33pF

R
19

10K
R

19
10K

C
36

180pF

C
36

180pF

Y
3

16M
H

z

Y
3

16M
H

z

U
10

nR
F905

U
10

nR
F905

TR
X_C

E
1

PW
R

_U
P

2
uPC

LK
3

VDD 4

VSS5

C
D

6
AM

7
D

R
8

VSS9

M
ISO

10
M

O
SI

11
SC

K
12

C
SN

13

XC
1

14

XC
2

15

VSS16

VDD 17VSS18

VD
D

_PA
19

AN
T1

20
AN

T2
21

VSS22

IR
EF

23

VSS24 VDD 25

VSS26
VSS27
VSS28
VSS29

VSS30

D
VD

D
_1V2

31

TX_EN
32

C
39

33pF
C

39
33pF

R
17

1MR
17

1M

J10

H
E

A
D

E
R

 50

J10

H
E

A
D

E
R

 50

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

C
42

10nF
C

42
10nF

C
35

3,3nF
C

35
3,3nF

C
38

22pF
C

38
22pF

LM
3940_+3.3V

_S
O

T223
U

13 LM
3940_+3.3V

_S
O

T223
U

13

IN
1

O
U

T
3

GND2

GND4

R
25

560R
R

25
560R

C
37

22pF
C

37
22pF

R
24

560R
R

24
560R

D
7

LE
D

D
7

LE
D

U
9

nR
F905_Loop_ant

U
9

nR
F905_Loop_ant

1

A
N

T2

2 A
N

T1

3

V
D

D
_P

A

4

C

5

C

6
C

7C
8C

9C
10C

11
C

12 C

13 C
C

34

27pF

C
34

27pF

D
6

LE
D

D
6

LE
D

J17

JUMPER J17

JUMPER 12

R
21

10K
R

21
10K

+
C

44
33uF

+
C

44
33uF

	report.pdf
	MAIN SENSOR BOARD_SCH.pdf
	WIRELESS SENSOR BOARD_SCH.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

