
Kristian Engh Lundgreen
Martin Kirch Dige
Thomas Paulin

Mission Control Client
for
GENSO

Kasper Revsbech
Mikkel Gade Jensen
Kim Højgaard-Hansen

Department of Electronic Systems

Computer Engineering

Fredrik Bajers Vej 7C

Telephone +45 96 35 87 00

Fax +45 98 15 17 39

http://www.control.aau.dk

Title:
Mission Control Client for GENSO

Theme:
Complex distributed systems

Project period:
5th semester,
September - December 2006

Project group:
Computer Engineering, group 552

Participants:
Kasper Revsbech
Kim Højgaard-Hansen
Thomas Paulin
Martin Kirch Dige
Mikkel Gade Jensen
Kristian Engh Lundgreen

Supervisor:
Dan Bhanderi

Number of prints: 9

Number of pages: 118

Number of appendixes and character:
1 pcs. CD-ROM

Finished: December 21th, 2006

Synopsis:

This project covers the analysis and de-
sign of a Mission Control Client for the
Global Educational Network for Satellite
Operations (GENSO) project, a project man-
aged by the International Space Education
Board (ISEB). The main purpose of the
GENSO project is to widen the communica-
tion window with student satellites. This is
done by allowing remote control of ground
stations connected in a network, The network
interface application is called a Mission
Control Client (MCC)

Initial requirements for the GENSO project,
did not ful�ll requirements for a su�cient
requirement speci�cation. Therefore work
was done to restructure and reformulate
these. The �nal requirement speci�cation
is still missing important parts regarding
functionality, because the GENSO project is
still in the requirement iteration phase.

Most of this project report documents
the �rst design iteration from the requirement
speci�cation. The conclusion states that
the design is ready to implement prototype
code, but more iterations are needed before
implementation can begin.

The written material in the report is public available.

Preface

This project has been made by project group 552, Computer Engineering 5th semester at
Aalborg University. The focus group for this report is people interested in distributed systems
and satellite communication as well as the GENSO project under ISEB.

Figures and tables in this report are labeled with chapter and �gure number e.g. 4.2 for 2nd
�gure in chapter 4. References to literature are shown as e.g. [8, p.25], meaning page 25 of
source 8 in the bibliography. In appendix D on page 116 is a list of acronyms used throughout
the report with acronym and expanded name. As an example the acronym GSS will be shown as
Ground Station Server (GSS) the �rst time it is used, and as GSS subsequently. In appendix E
on page 118 is a glossary of terms used in the report.

The project group would like to thank the following people for their involvement in the project:

• Supervisor Dan Bhanderi

• Abe Bonnema for his help on de�ning the requirements structure

• Neil Melville for his commitment as well as his constructive debates regarding the require-
ments structure

A CD-ROM is attached to the cover of the report. The CD-ROM contains the following:

• GENSO project documents

• WWW literature sources

• This report as PDF �le

The GENSO collaboration e�ort

It has been chosen to explain some details of the project process, concerning the collaboration
with the rest of the GENSO project. The GENSO project works across both di�erent countries
and di�erent continents, and that of course puts constraints on the communication �ow. At
the same time the project objectives are aiming at building a global distributed system, in a

3

way not done before. This sets hard requirements for the project management, to be able to
control that everybody in the project moves forward in the same direction.

Project management in the GENSO project consist of a project leader, and a system engineering
team. The system engineering team consists of a member from each assigned work package (see
table 1.1 on page 11), but since no work packages have been assigned yet, the system engineering
team is not fully functional. This has had an impact on the way the project has moved forward,
speci�cally regarding the work on requirements. The project management has de�ned that the
requirements has to be �nished before the work packages can be assigned, even though this
project group feels that the system engineering team should play an important role in this
de�nition. The requirements for the GENSO project are confusing in their present state, since
there is no link from the de�ned objectives to the actual system requirements. As described in
section 6.2 on page 30 this project group and other participants have tried to begin the work
needed for completing this link, but it has not been achieved yet.

One of the main reasons that the requirements provided by the GENSO project are not com-
plete, are also due to the time, at which this project group entered the GENSO project. The
project group has worked with the GENSO project one semester, but the GENSO project has
just started to move into the design phase, and has been planned to last 2 1

2 years. This gives a
non complete set of requirements, and too many questions that needs to be answered. Some of
these loose ends has been �lled by taking a choice, others are still in question. This of course
results in a non complete solution.

Throughout the process there has been a lot of communication between the GENSO project
and the project group. This communication has unfortunately mainly been through text com-
munication, either via chats, through mails or through USENET. This way of communication
is often a lot slower than just talking to each other, and unfortunately some misunderstand-
ings are also inevitable. These di�culties has resulted in a signi�cant waste of time, both for
the GENSO project, but also for this project group, since signi�cant parts of the work on the
requirements has been discarded more than once.

The GENSO project has also held two workshops. The latest workshops was due when this
semester started, and one member from this project group attended the workshop. The result
of actually making sure that people from the whole project met each other face to face, and
discussed how this can be done, is quite impressing, since most of the decisions actually made
in the GENSO project, where decided at these workshops. A third workshop is in the planning
phase, and the project group believes this will help the GENSO project move forward.

The whole process of working with a non complete set of requirements and trying to implement
some parts of the GENSO project anyway, has not resulted in a �nished solution, but the
project group feels that this project report can be viewed as the way the whole project should
be handled regarding requirements work. If the GENSO project does not de�ne how to link
the objectives with the requirements, the risk of not ending up with a working system will be

4

signi�cant. This project report does point out a lot of the holes in the design and requirements
as they are stated today, and the project group hopes that the GENSO project management
will try to �nd a way to handle this.

Kim Højgaard-Hansen Mikkel Gade Jensen

Martin Kirch Dige Thomas Paulin

Kasper Revsbech Kristian Engh Lundgreen

Contents

1 Introduction 7
1.1 GENSO . 8

1.2 Report structure . 11

I Analysis 13

2 Existing solutions 14
2.1 Ground station in general . 14

2.2 AAU/Svalbard ground station setup . 15

2.3 Existing networks of Ground Stations . 17

2.4 Analysis conclusion . 20

3 Problem formulation 21

II System description 22

4 Use case analysis 23

5 Functionality delimitation 28

6 Requirement iteration process 30
6.1 Existing requirement structure . 30

6.2 The new structure . 30

6.3 Wiki structure . 32

6.4 Filling in the new structure . 34

6.5 Final system . 34

6 CONTENTS

7 Requirement speci�cation 37

III Design 41

8 Design introduction 42

9 Design methods 44
9.1 Distributed system . 44

9.2 Using XML for communication . 46

10 Module design 50
10.1 User Interface . 54

10.2 Message Handler . 65

10.3 Scheduler . 72

10.4 Predict . 84

10.5 Database . 89

10.6 Data Handler . 96

10.7 Design conclusion . 100

11 Conclusion 101

12 Perspectives 102

Bibliography 103

A Satellite trajectories 105

B Description of NORAD TLE 109

C Accepttest speci�cation 111

D Acronyms 116

E Glossary of terms 118

1Introduction

Satellites have existed since late 1950's when the Soviet Union launched the �rst satellite, Sput-
nik 1, into orbit. Today there are approximately 2500 satellites in orbit around the Earth[15].
While the majority of the satellites are for commercial or military use, there are also several
satellites in orbit for educational purposes, as several universities around the world have devel-
oped their own satellites. Communication between the satellite and Earth is accomplished by
means of a ground station usually placed at the university where a given satellite was developed.

One issue when working with satellites has always been the communication between the ground
station and the satellite (see �gure 1.1). Communication is only possible when the satellite
passes over the ground station which means that the time slot in which communication is
possible, is narrow. Student satellites typically has a round trip time around the Earth of
approximately 90 minuttes, and a pass duration of 10 minuttes at best [11, p. 4].

AAU ground
station

Earth

Figure 1.1: The �gure shows how communications is only possible when the satellite
passes over the ground station. The proportions of the �gure are not exact.

The limited amount of time, where the satellite is available for communication, puts a lot of
constraints on when data can be exchanged between the ground station and the satellite. If it
were possible to use several ground stations around the world, the satellite would be available
for communication much more often.

8 1.1. GENSO

1.1 GENSO

Global Educational Network for Satellite Operations (GENSO) is a project that has been
started by the European Space Agency (ESA) Education Department under the auspices of
International Space Education Board (ISEB)[10, p.4]. The project aims at creating better
communication possibilities for student satellites at a global level. As explained in section 1
on the previous page the communication with a student satellite is usually limited to only a
single ground station. The GENSO project aims at creating a global network of collaborating
ground stations, which can all be used by participating satellites. The project is de�ned by the
following objectives[11, p.6]:

• Unparalleled near-global levels of access to educational spacecraft in orbit.

• Optimised uplink �delity by calculation of real-time link budgets and automatic uplink station
selection.

• Remote control of all participating ground stations.

• Remote access for operators to real-time mission data, even in cases when their local ground
station is experiencing technical di�culties.

• Downlink error-correction by comparing multiple data streams.

• A global standard for educational ground segment software.

• An optional well-de�ned standard solution for educational ground-segment hardware (in order
to expedite participation in GENSO).

• An optional well-de�ned standard design solution for educational space segment communi-
cations hardware (in order to expedite participation in GENSO).

• Support a common interface for applying for frequency allocation and coordination.

These objectives form the overall goals of the whole project. The objectives are in the process
of being further developed into a requirement document, de�ning what should be developed to
make this possible. The document de�ning the initial draft of requirements, will from here on
be referenced as the list of ideas (see section 6.1 on page 30). The list of ideas can be found on
the CD-ROM.

The GENSO project was initiated by ESA Education Department as an assessment study in
June 2006. A group consisting of The Radio Amateur Satellite Corporation (AMSAT), Uni-
versity Space Engineering Consortium (UNISEC), Student Space Exploration and Technology
Initiative (SSETI) and several universities including Aalborg University (AAU), were asked to
determine the technical feasibility of the project and de�ne a comprehensive set of technical
requirements with suggested design solutions. This work resulted in the de�nition of a set of

1.1. GENSO 9

work packages. These work packages are distributed to the participating organizations, which
will then carry out the needed work. The contents of each work package is described in Table 1.1
on page 11. The GENSO project development phase is scheduled to last around 2 1

2 years from
june 2006 to November 2008[10].

The work packages are formed from a "Conceptual Layout"[11] of the system, as shown in
�gure 1.2:

GENSO system
Conceptual Layout

Ground Station Server

Server
Data

Handler

Hardware
interface

Server
User Interface

Local
Control

Scheduler

Server
networkinterface

Authentication
server

Mission Control Client

Client
User Interface

Mission
Data Handler

Client
Network Interface

Organiser

The Internet

Figure 1.2: The �gure shows the �Conceptual Layout� of the GENSO system. The
system is divided in three nodes; The Mission Control Client, the Ground Station
Server and the Authentication Server. The �rst two are further split up into logical
modules. These modules forms the borders of the di�erent work packages. The �gure is
a simpli�ed version of the original �Conceptual Layout� �gure without communication
lines[11]. The layers are just logical splits, not completely determined.

The three nodes are described as follows:

Ground Station Server (GSS)

Quote:
An instance of the GSS should be running on the controlling computer(s) of each
hardware ground station in the network. This software consists of a Hardware In-
terface module to control the local hardware (a large library of drivers would be
distributed with it, along with speci�cations for users to develop new drivers), a Lo-
cal Control module to control the Hardware Interface, a Scheduler module to plan
and execute passes, and a Network Interface module for communication with other

10 1.1. GENSO

instances of the GSS and MCC.[11, p.7]

Mission Control Client (MCC)

Quote:
Each spacecraft project should run one instance of the MCC on the computer used by
the spacecraft operators. This software consists of a Graphical User Interface, a Data
Handling module for storing and retrieving mission data, an organiser for booking
uplink sessions and retrieving downlink data, and a Network Interface module for
communication with instance of the GSS.[11, p.7]

Identi�cation and Authentication Server (quote)

Quote:
Users of both the GSS and the MCC must login to identify themselves, using a central
authentication server (or mirrors of it) for identi�cation and authentication. From
these logins the server generates two dynamic lists and distributes them throughout
the network:

• The Ground Station Servers List (GSSL), being a list of all instances of the GSS
registered in the network, and their various details.

• The Participating Spacecraft List (PSL), being a list of all instances of the par-
ticipating spacecraft registered in the network, and their various details, including
those of the appropriate instance of the MCC.

[11, p.7-8]

Each software development work package will be assigned to a development team, who will
be responsible for the design, development and implementation of the work package content.
There are also other types of work packages for non software development. The work packages
are de�ned in Table 1.1 on the next page.

1.2. REPORT STRUCTURE 11

Work packages for the GENSO system
A Hardware Interface and Local Control modules of the Ground

Station Server, for Microsoft Windows.
B Hardware Interface and Local Control modules of the Ground

Station Server, for Linux.
C Scheduler, Data Handler and User Interface modules for the

Ground Station Server (OS independent).
D Organizer, Data Handler and User Interface modules for the Mis-

sion Control Client.
E Authentication Servers and the Network Interface modules for

both the Ground Station Server and the Mission Control Client.
F Standard hardware ground station in the network, and coordi-

nated development of a library of appropriate device drivers.
G De�ning, developing and controlling all interface speci�cations,

tracing and maintaining the requirements tree, coordinating func-
tional testing plans and progression, and taking project-level tech-
nical decisions.

H Maintenance of appropriate infrastructure to support the project,
including IRC, NNTP, FTP and HTTP servers.

I Investigating relevant legal issues, developing user agreements,
identifying, recruiting, and coordinating network participants,
and design and content of the project website

Table 1.1: The GENSO work packages

This is the information used throughout the report as source material about the GENSO project.

1.2 Report structure

This section contains an explanation of the structure of the report and gives a brief introduction
to each part in the report.

The report is split into the following parts:

I Analysis

II System Description

III Design

12 1.2. REPORT STRUCTURE

Analysis

The analysis contains a description of what a ground station is, the AAU/Svalbard setup and
a description of the existing ground station networks:

• Federal Ground Station Network

• Ground Station Management Service

System description

This part primarily concerns the work with the requirements to the system. The part begins
with a use case analysis of the MCC followed by an explanation of the requirement iteration
process that has been made for both the GENSO project, and the for this project. This ends
up whit the requirement speci�cation of the MCC.

Design

The design part describes the overall design of the MCC and the overall design methods used.
This is followed by a description of each module in the MCC. The design is followed up by
a design conclusion. The design part is ended with the conclusion of the project and the
perspectives.

Appendix

Appendix A contains an explanation of satellite trajectories to understand how to track satel-
lites, and in general how to evaluate the paths of satellites.

Appendix B Contains a description of the Two-Line Element (TLE) provided by North Amer-
ican Aerospace Defense Command (NORAD) to understand how to interface to the Predict
library.

Appendix C Contains the accepttest speci�cation describing the test cases constructed to
test if the requirements in the requirement speci�cation is ful�lled.

Appendix D Contains the acronyms used throughout the report.

IAnalysis

2Existing solutions

Although the GENSO-project has de�ned which work packages that must be developed and
what they consist of, a general analysis of the initial problem is examined. In order to de�ne
an adequate problem formulation, there are aspects of the way present satellite systems work
that need to be analyzed. In the analysis an overview of which conditions needs to be ful�lled
to make communication between a satellite and the ground station of a university possible, will
be given. These conditions will be based on the con�guration at AAU, and re�ects over the
advantages and disadvantages with the current setup. After this, two other projects concerned
with network based ground stations will be described. The �rst project to be described is the
Federal Ground Station Network (FGN) project, which will be followed by a description of the
Ground Station Management Service (GSMS) project. Both projects will be analyzed to get
an overview of the requirements needed by such a collaboration of ground stations as well as
design considerations.

The results of the analysis will then be used to construct the problem formulation of this
project.

2.1 Ground station in general

A signi�cant part of building a satellite is to establish a two-way communication link from the
Earth to the satellite. Two-way communications is needed for requesting speci�c data from the
satellite and evaluate the house keeping data on the satellite platform. The basic link to the
satellite is given through a radio connection, which is initiated by a ground station.

A ground station is a set of equipment, needed for providing control, data and tracking mecha-
nisms for satellite spacecrafts in orbit around the Earth. The following basic hardware is needed
to construct a ground station:

• Antenna, for distributing radio signals

• VHF/UHF radio, for transmitting and receiving modulated signals

• Antenna rotator, for tracking systems

• Preampli�er, needed to amplify the received signals

• Modem, for modulating and demodulating the radio signals

• PC or controller, for controlling and timing the hardware

2.2. AAU/SVALBARD GROUND STATION SETUP 15

The tracking system of a ground station is an important part, since the satellite is only visible
by the ground station in a short period of time, and the received signal is weak. Therefore it
is necessary to make the antenna omnidirectional. As the satellite moves across the sky, the
ground stations has to compensate by moving the antenna or it will loose the communication
link to the satellite. If the antenna is not in the right position, the signal quality will fall, and
the signal maybe hard to demodulate due to interference.

The modem inside the ground station setup has to match the modulation pro�le chosen by
the satellite developer. There are many di�erent kinds of modulation pro�les made for radio
communication. Therefore it is necessary to know the pro�le of the satellite before the session
is started. Normally these modems are implemented in hardware, and accessed by a standard
RS232 interface.

The PC or controller is mostly a special implementation of some satellite speci�c software, but
basically only drivers for radio and antenna rotator is needed.

2.2 AAU/Svalbard ground station setup

AAU has constructed a ground station to communicate with student satellites. Originally it
was build to communicate with AAUs �rst satelite AAU CubeSat. The ground station has
since been modi�ed to �t the communication protocol and modulation of the SSETI Express1,
developed by the European Space Agency (ESA). In the future the AAU ground station will
be modi�ed to support communication with the AAUSAT II.

The AAU ground station is using an ICOM VHF/UHF radio, with S-band options. In connec-
tion with the radio there is a TNC7 modem, which supports modulating and demodulating Fast
Frequency Shift Keying / Minimum Shift Keying (FFSK/MSK) signals. AAU ground station
is using the UHF band for uplink data, and S-band for downlink. This decision gives a faster
downlink, than uplink.

Attending the SSETI Express project AAU redeveloped a ground station, and a Mission Control
Center2. In order to ensure a backup ground station, and a larger communication window, AAU
was allowed to use a ground station in Svalbard. See �gure 2.1 on the following page

1http://www.esa.int/SPECIALS/sseti_'express/index.html
2Must not be confused with the Mission Control Client that the GENSO network de�nes. The Mission

Control Center are the direct link to the satellite.

16 2.2. AAU/SVALBARD GROUND STATION SETUP

interface

internet/local network

Svalbard ground stationAAU ground station

interfacecommon interface

Mission control center

Figure 2.1: An overview of the two ground stationes located in Svalbard and AAU.
The two ground stations have the same driver interface therefore the Mission Con-
trol Center can send the same command regardless of which ground station it is
communicating with

As shown in �gure 2.1 the AAU solution contains the following two parts:

• Mission Control Center

• Ground Station Server

The two systems are split into several subsystems which are further documented in their re-
spective project reports (see [2] and [9]) The main concern in this project is the handling of
the communication between two or more ground stations and the design of the Mission Control
Center allows usage of several ground stations through a GUI providing facilities for sending
commands and receiving mission data. Thus it is designed to be fully controlled, by the user,
to select which ground station to connect to.

The communication to the ground station is handled in the same way regardless of which ground
station it is connected to. This is ensured by applying the same interface to the two ground
stations. In order to get the same interface the ground station server in Svalbard is running the
same software as the server on AAU, the only thing changed is another set of drivers to handle
the di�erent hardware setup. The drives then provide the same common interface to the rest
of the software as in AAU.

The AAU/Svalbard setup is only a semi distributed system. The user has to manually choose
between two servers, which leaves the user with an extra workload. It would be preferred for

2.3. EXISTING NETWORKS OF GROUND STATIONS 17

the user not to worry which ground station is being used for a communication session as long
as the connection to the satellite is active.

2.2.1 Summary

Todays con�guration at AAU consists of a complete system with a few backup ground stations
that can be contacted if the main ground station fails. This con�guration gives possibility of
controlling and adjusting anything at the local ground station, but the risk of not being able
to communicate with the satellite because of a broken ground station is high. Another concern
is that communication with the satellite is not possible whenever the satellite is out of view of
the ground station.

2.3 Existing networks of Ground Stations

Now that the current set-up of the AAU/Svalbard ground stations has been described, the next
step is to analyze already developed networks of ground stations. As this is not an entirely new
idea, and GENSO is not the �rst initiative to develop such a network, it is possible to analyze
the FGN and the GSMS projects. which are similar to the GENSO project.

2.3.1 Federated Ground Station Network

In a attempt of creating a collective communication satellite system National Aeronautics and
Space Administration (NASA) and Standford University developed guidelines for how such a
system should be engineered. The FGN is an e�ort to standardize the con�guration of ground
stations world wide, so they can take part in a global ground station network. The FGN
provides speci�cations on the interface the ground station must respect in order to become a
part of the network, this is called the Ground Station Markup Language (GSML).

GSML is an Extensible Markup Language (XML)-based language constructed by Stanford
university to act as an Application Programming Interface (API) to the FGN. It provides a
hierarchical command and control structure with low level device commanding of the ground
station hardware, and high level mission planning functions.

By creating this network the goal is to obtain the following advantages [7]:

• Reducing mission operations cost

• Increasing mission yield and capabilities

• Provide baseline satellite infrastructure to make science data more accessible and enable
experiments to have wider impact

18 2.3. EXISTING NETWORKS OF GROUND STATIONS

• Make this infrastructure robust and a�ordable

As the above mentioned are only system speci�cations Stanford University developed the Mer-
cury Ground Station System (MercuryGS), being an actual software solution following the
GSML.

Mercury Ground Station

The MercuryGS system is a software suite designed to allow remote control and commanding
of ground stations via the Internet.

The heart of MercuryGS is a web frontend software, a database, and the ground station manager
(GSM). The web frontend provides a basic, complete command and control interface to all
ground station services. Through the web interface, you are able to con�gure the ground station,
control hardware, and schedule ground station resources. The database provides storage for
all this information. The GSM is an independent application. It polls the database for active
sessions and spawns the software to enable session execution.

Summary

The MercuryGS enables remote access to ground stations, expanding the possibilities of com-
municating with the satellites, by enabling access to ground stations all over the world. The
system works, and has been implemented and in use with a range of student satelittes. The
systems uses well known and well proven software to accomplish most of the functionality, and
a modular design to ease implementation. A ground station speci�cation has also been de-
veloped, together with a generic API called GSML, to ease the implementation of both new
ground stations and remote use of these [13].

The MercuryGS is not a network of ground stations. This means that it is only meant for
controlling one ground station at a time, and scheduling and control for more than one has not
been planned nor designed.

2.3.2 Ground Station Management Service

The GSMS was originally started in 2003 by 5 universities3 in Japan and today there are 15
participants in the project. The main objective of the project is to develop an internet-based
open source autonomous tracking system. Like the FGN, GSMS focuses on the de�nition of
the interfaces and software design rather than on the actual software development. GSMS has
already been used with several satellites and there is still ongoing development of the project.

3Universities from Tokyo, Nihon and Kyushu as well as the two Institutes of Technology of Tokyo and
Hokkaido

2.3. EXISTING NETWORKS OF GROUND STATIONS 19

GSMS overview

In contrast to the FGN, GSMS has introduced a further major part into the network, that is
the Central Server (CES). Thereby the overall GSMS system consist of the following parts:
(see �gure 2.2).

• Client: A GUI interface.

• Operation Server (OPS) : Located at the ground station and responsible for the communi-
cation with the satellite.

• CES: A central server responsible for handling authentication of the users of the system.
Furthermore the CES is responsible for the large scale calculation of the scheduling.

CES

Internet

Client 1

Client 2

OPS 1 OPS 2 OPS 3

Figure 2.2: The �gure shows an overview og the GSMS system. In this case there
are 2 clients, 1 CES and 3 OPS all connected through the internet.

The main aspect of the GSMS it the de�nition of the interfaces. These are used as guidelines
for how the di�erent software parts are interconnected. Because the focus of GSMS is not the
development of the software, but de�ning how the communication and �ow should be, it is
important with clearly de�ned interfaces. Thereby it is possible to exchange any software part
or change software modules like drivers without redesigning the whole system.

The CES takes care of a lot of work, that is necessary for the GSMS to be operational. This
work concerns both authentication as well as the scheduling of passes. This can result in reduced
performance, as the scheduling procedure can take up much of the CES's time. In case of the
network grows, this becomes a hindrance. As to authentication, it is necessary to have some

20 2.4. ANALYSIS CONCLUSION

centralized system, so a possible solution could be to divide these two tasks into two separate
systems.

2.4 Analysis conclusion

The GENSO system generally goes one step further than previously developed systems. First of
all it takes the cooperating ground stations to a global level, where ISEB de�nes the scope. This
means that instead of NASA having Mercury, Japan Aerospace Exploration Agency (JAXA)
having GSMS etc. all these organizations join up in a common system. This means that the
actual reason for making the GENSO project is more political than based on new functionality.

The two previously developed systems described here will be used as knowledge base for de-
veloping GENSO. Mercury has constructed a general but also �exible software suite, allowing
remote control of another ground station. MercuryGS does not provide scheduling of more
than one pass over ground stations. Mercury uses XML to communicate between nodes in
the network, allowing a wider use of programming languages to develop new software. GSMS
actually achieves most of what GENSO wants to achieve, but are having scalability di�culties
with the chosen design.

There is also a new objectives in the GENSO project. The objective concerning using more
than one ground station at the same time, and using this to achieve a better level of error
correction.

3Problem formulation

The preliminary analysis has lead to the problem that this project wishes to solve. To make
it possible to expand the communication window with a satellite, the use of more than one
ground station is desired. This can be achieved in more than one way, as seen in the description
of both the Mercury system, and GSMS. The aim of GENSO is to create a similar system,
but at a larger scale and with extended functionality. GENSO want for the participants to be
responsible for one or more work packages, but the work packages were still in the "decision
process" at the start of the semester. Thus instead of choosing one work package, the group
has chosen to work with the development of the whole MCC

The problem this project wishes to solve is:

How can a Mission Control Client (MCC) of a distributed network of ground
stations be developed to suit the GENSO project?
The MCC is de�ned as a control interface of the GENSO network. The focus of the project
will includes the following subjects:

• De�nition of use cases and requirement speci�cation

• Design, implementation and test of the MCC

IISystem description

4Use case analysis

The GENSO project does not implement a use case analysis to describe the main functionalities
of the system. This project will implement one for the same reasons. A use case analysis is used
to capture the requirements from the customer[5] and is typically the �rst activity in object
oriented software development. This use case analysis is constructed by reverse engineering the
GENSO list of ideas. Figure 4.1 on the next page shows the use case diagram of the MCC with
associated actors:

• An Operator, whose main objective is to control and schedule the mission of a satellite

• Predict, which is an application for predicting satellite trajectories

• An Authentication Server (AS), which is responsible for management of the network. It
holds the Ground Station Server List (GSSL) and the Participating Satellite List (PSL).

• A Ground Station Server (GSS), which is the gateway to the satellite, responsible for
radio link communication

• A Satellite

In the following sections, each captured use case in the MCC will be described with regards to
objective, �ow and exceptions.

24

Operator

GSS

AS

Predict

Satelite

MCC

Communicate with satellite

Reserve flightplan

Construct flightplan

Request GSSL

Configure MCC

Control GSS

<< include >>

<< include >>

Logon/logoff network

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4.1: The Figure shows the MCC use case diagram. The relationsship notation between the
actors GSS and satellite is not a part of the UML standard, but it visualizes the role of the GSS being
a gateway for communicating with the satellite

Construct �ight plan

Objective
The �ight plan is a chronological list of the ground stations that the satellite passes over in a
given period of time. It must also contain pass over time for each ground station. The objective
is to calculate which ground stations are in range of the satellite and available in the time period
speci�ed by the operator and then show it to him.

Flow

25

1. The operator tells the MCC in which time span he wants to communicate with his satellite

2. The MCC uses Predict to calculate the passover route

3. A list of the available GSSes are requested from the AS through the included use case
"Request GSSL"

4. The MCC uses the passover route and the GSSL to determine the ground stations in range

5. The sequence of ground stations is shown to the operator

Exceptions

• If predict is not responding, display the exception to the operator

• If the AS is not responding, display the exception to the operator

• If no ground stations are in range or available, display it to the operator

Reserve �ightplan

Objective
When the �ight plan is constructed, the involved ground stations must be reserved for satellite
uplink/downlink communication.

Flow

1. The operator chooses which GSS to put into the �ight plan and reserves it

2. The MCC requests the necessary time slots from the involved GSSes

3. Every GSS reports to the MCC if the requested time slot is granted

4. The results are displayed to the operator

Exceptions

• If a GSS is not responding, request GSSL again and try later.

• If the AS is not responding, display the exception to the operator

Logon/logo� network

Objective
To use the functionality of the network, the MCC must logon �rst.

Flow

26

1. The operator wants to use the network

2. The operator supplies the MCC with logon

3. The MCC is authenticated by the AS

4. The operator can use the network

5. When the operator is done using the network, he logs o� the network

Exceptions

• If the MCC can not be authenticated, the message "Wrong logon name or password" must
be displayed to the opearator.

• If the MCC can not connect to the AS, a timeout message must be displayed to the opearator.

Communicate with satellite

Objective
Communication from the MCC to the satellite is possible when a GSS time slot is available.
The MCC connects to the GSS and then the MCC can use the GSS to send commands and
download data from the satellite. All uplink and downlink data must be saved in a database
at the MCC for later viewing. The MCC UI must provide information about the connection
status to the current GSS.

Flow

1. The MCC Initiates the connection to the regarding GSS

2. The GSS acts like a data gateway

3. The MCC transmits commands to the satellite using the GSS

4. The GSS forwards downlink data from the satellite to the MCC

5. At the end of the session a pass report is generated by the GSS and requested by the MCC
to display to the operator

Exceptions

• If no more GSSes are available in the session a message must be shown to the operator

27

Control GSS

Objective
It must be possible for the operator to �ne tune speci�c parameters at the GSS concerning the
communication session, such as Doppler correction and antenna position. This must be done in
both a manual and a semi automatic way. The GSS will by default calculate these parameters,
but the need of correction may appear.

Flow

1. The MCC provides the operator with the settings of the GSS

2. The operator observes data corruption of the downlink/uplink stream.

3. The operator changes a number of the GSS settings

4. The data downlink/uplink stream is corrected

Exceptions

• If the error can not be corrected by changing the GSS settings, the error must be located
elsewhere.

Con�gure MCC

Objective
The operator needs to specify which satellite is attached to the MCC and a number of other
MCC settings. This use case also handles the speci�cation of satellite parameters in the PSL,
such as satellite name, modulation and frequency.

Flow

1. The operator chooses which setting to change

2. The MCC changes the setting

Exceptions

• If changes to the PSL has been made, the new settings must be sent to the AS

5Functionality delimitation

In the work constructing the use case analysis by reverse engineering the list of ideas described in
section 6.1 on page 30, it has been chosen to delimit this project from some of the functionality.
The functionality will be described here as text instead, to make it obvious that it has been left
out of the design, not forgotten in the reverse engineering work.

Distinguish between uplink passes and downlink passes
The list of ideas states that the GENSO system shall be implemented with functionality to
distinguish between uplink and downlink passes. This should be done to let the GSSes react
autonomous with satellites that passes over them. The GSSes could then download di�erent
mission data for later retrival by the MCC. This functionality has been left out since it is not
considered important in an initial version of the GENSO system.

Multiple downlink
The list of ideas states that the GENSO system should be able to allow a satellite operator
to use more than one GSS at the time. This should be possible because multiple downlink
streams could be compared for better error correction. It has been chosen to leave this out in
this project since it is not considered relevant in an initial version of the GENSO system.

Quality factors
The list of ideas states that the GENSO system shall be implemented with a quality factor to
weigh nodes in the network against each other. This should be done to give the operator a better
view of what nodes would be best to book. It has been chosen to leave out this functionality
because it is unde�ned how this quality factor should work.

Scheduling Lottery
The list of ideas states that the GENSO system shall be implemented with a special way of
deciding which MCC is granted a pass when multiple MCCs tries to book a pass. All MCCs
should be able to make initial bookings 24 hours before a pass. 6 hours before the pass, a
lottery is weighing the di�erent booking requests against each other should decide which MCC
is granted the pass. It has been chosen to design the system with a �First come, �rst serve�
scheduling algorithm instead. This can work in an initial version of the system.

Integrated Satellite application
The list of ideas states that the GENSO system shall be implemented with an MCC that is able
to send commands to a satellite. Since this requires a de�nition of a GENSO satellite protocol,
and this work has not been done, this functionality has been left out. Instead the system will
be designed in such a way that it acts as a communication interface to the satellite. The actual
commands to the satellite must be send from a application separate from the GENSO system,

29

called �Satellite Application�.

Overlapping passes
The list of ideas states that the GENSO system shall be implemented with a protection mech-
anism, securing that no overlapping passes can be booked. This is done to secure that two
GSSes cannot send uplink commands to the same satellite. It has been chosen to leave out this
functionality in this project, and let it be up to the satellite operator to make sure that doesn't
happen.

Now that the delimitation of functionality has been described, the requirement work will be
described.

6Requirement iteration process

In every software / hardware project there must be a requirements speci�cation. This also
applies to the GENSO project. Because the project group joined the GENSO project in an
early phase the requirements work was still ongoing and the group was asked to contribute on
the requirement work. In this chapter the outcome of that process will be described.

6.1 Existing requirement structure

The initial implementation of the GENSO project requirement speci�cation was a long, num-
bered list of requirements. It was formed from multiple discussions of the project and the ideas
of the participants. This list is referred to as the list of ideas because the requirements is written
as ideas and wishes to the system not as speci�c and testable requirements. The list of ideas
can be found on the CD-ROM.

The structure of the list of ideas was multiple levels of indentation as a result of new ideas
being added and spawned by other ideas. It had no classi�cation of the individual requirements
which made it hard to gain an overview of the entire system. Further more there was not a
su�cient de�nition of the requirements de�ned by the actors in the system.

For this reason it was necessary to restructure and rede�ne the requirements from the list of ideas
into a new structure, providing a better overview and traceability between the di�erent levels
of requirements. This project group and Abe Bonnema (System Engineer at Del� C3) from TU
Delft was assigned to develop a new structure and guidelines of how to plot requirements.

6.2 The new structure

In order to achieve a more su�cient structure Abe Bonnema proposed to use the structure in
Figure 6.1 on the next page. On the �gure the name G-Net is used as it was made before the
project was named GENSO.

6.2. THE NEW STRUCTURE 31

����� ���������	
�����
���
������������

��������
��	
��
����
��

��
��

������������
�����
�����
�����
�

+� �����

�&#������*
'	����"#�
��	&
��
.�#�
*
'	����
�#/#��	#�'�/���	&
����
	��!�0�!�����'���	�	#�'�
'
	1��-���&
��
.�#�
*
'	��/���	&#��*#��#�'���
��	���	��
��������#'��	��	&
�0��
!#'
�!�2��	�
�/�	&
��2�	
*�����
���#0
��#'�	&
����
	�0��
!#'
��'���03
�	#"
������*
'	�456$�����

'�#'�
/#���
�7�

���������	�
��
�	���	���

���	��
�����	�����
����
	����������	���	���������
��
	�������

Figure 6.1: The �gure shows the requirement structure proposed by Abe Bonnema.
This proposal requires that user requirements and mission objectives forming the G-
Net objective document are de�ned before the actual work on the requirements begins.
In System level requirements the G-Net objective document requirements are derived
into requirements de�ning how the system ful�ll them. The system is then split into
the three systems: GSS, AS and MCC. And the system level requirements are then
derived into the respective system(s) de�ning how to ful�ll them. If there is a need of
further division there can be de�ned sub-systems to each system, and derive the system
requirements into the subsystems

Given the structure de�ned in Figure 6.1 a system had to be build containing the possibility to
make requirements and cooperate from di�erent locations. To do this job the group proposed

32 6.3. WIKI STRUCTURE

to use a DokuWiki 1 system. A DokuWiki is a website that allows users to edit and share pages
with each other through a web browser. It is organized with a hierarchical structure of the
pages which provides an easy navigation to the viewer/editor. This means that it is e�ective
for collaborative editing and sharing of documents. There are many di�erent kinds and layouts
of a wiki system, but for this project the DokuWiki has been chosen because it is targeted at
creating documentation for developer teams. It has a simple layout, is PHP powered and stores
everything as text �les which do not require a database from the hosting server. [4]

6.3 Wiki structure

The requirement structure was implemented in the DokuWiki as an abstract structure with
one or more pages at each level. This means that the navigation is accomplished by clicking
through the levels of the structure. The levels is implemented as described in Figure 6.1. This
lead into to the levels:

System level

• GSS

• AS

• MCC

The requirements in the regarding system is then further categorized into the two structures:

Hardware

• Constraints

• Functional requirements

• Performance requirements

• Interface requirements

• Testing requirements

• Reliability, Availability, Maintainability and Safety (RAMS) requirements

Software

• Constraints

• Functional requirements
1http://wiki.splitbrain.org/wiki:dokuwiki

6.3. WIKI STRUCTURE 33

• non-functional requirements

Each requirement was added as a separate page in the wiki which makes it possible to add a
discussion about the purpose and phrasing of it, and to use revision control. It is also possible to
organize the requirements by creating pages with an overview linking to the desired requirement
pages. The table in Figure 6.2 is used in each requirement page to achieve traceability and to
specify number and title. This makes every requirement traceable from a User level requirements
to speci�c requirements. I.e. each requirement page contains:

• A tracing table

• A discussion block

• The requirement itself

Figure 6.2: An example of a requirement page in the wiki system with tracing table, comments and a
discussion.

Like the example in Figure 6.2 each requirement is numbered with a dot notation referring
to the location of the requirement. E.g. MCC.SW.F.09 for a functional software requirement
in the MCC. In general: < system > . < SW/HW > . < type > . < req. number >.
The Rational/Comment section is for various purposes e.g. descriptions of changes in the
requirement or to-do jobs.

34 6.4. FILLING IN THE NEW STRUCTURE

6.4 Filling in the new structure

Is was decided that the responsible team of each work package should move the requirements
from the list of ideas into the requirement structure, but a problem that was appointed by the
group and by Abe Bonnema was that the user requirements and the system requirements was
not de�ned or derived in the list of ideas. This means that it is hard to trace the impact on
changing a requirement in e.g. the MCC level.

Furthermore it has been exhibited that there is a di�erence in the way that the participants
in the project understand the work on requirements. The proposal from the group and Abe
Bonnema suggest that requirements is de�ned in a strict way e.g. as de�ned in [1]. It is also
suggested that there shall be a traceable �ow down between the di�erent levels in the system.
To achieve a traceable �ow down and a consistent requirement tree the approach should be that
the system engineering team should work out the top levels and secure that all that requirements
that is plotted in the lover levels can be traced to the top level.

Regarding the structure the project management team have chosen to switch the level containing
the MCC, GSS and AS with a level containing the 7 di�erent work packages as shown in
Figure 6.3. This means that the development of the system is mixed up with requirements to
e.g. infrastructure and legal issues. This can endanger the system traceability because the split
up into subsystems is not based on a logical split up but a split up based on work packages.
The legal issues as an example could have been stated in the analysis forming the objective
document and in that way put the necessary constrains on the system level requirements.

Figure 6.3: The structure of the wiki split into 7 di�erent work packages

The DokuWiki used for the new structure can been seen at http://krevsbech.dk/wiki/doku.php.

6.5 Final system

Because of those decisions and the fact that the group needed to work faster than the GENSO
project in the requirement process, it was decided to use the Dokuwiki to create a new structure

6.5. FINAL SYSTEM 35

based on the structure developed for the whole project but only containing the requirements
relevant for the MCC. It was chosen to make it from the top and down as the literature
prescribes [1]. This implies the following levels in the diversion of the requirements:

• Use Case analysis

• De�nition of user requirements

• De�nition of system level requirements

It is chosen to split the system level requirements into their regarding subsystem only for the
MCC (but also making room for the GSS and AS) and categorize the requirements into modules
without making another level. The numbering of each requirement is chosen to a�ict structure
in Figure 6.4.

GSS

1.3
AS

1.2
MCC

1.1

l1
User level

requirements

System level
requirements

Figure 6.4: The structure of the �nal system. Only the MCC-requirements of the gray boxes is imple-
mented in the wiki. The numbering of user level is 1.x and system level is 1.1.x

This implies that the user level requirements are numbered as 1.01, 1.02 the system level
requirements for the MCC are numbered: 1.1.01, 1.1.02

The actual de�nition of the requirements has been done by converting and reformulating the
requirements de�ned by the GENSO team. This is done to be able to make a proper �ow down
of the requirements. In that process some of the requirements have been discarded due to a
wish to implement a base system in the �rst iteration of the system (See section 5 on page 28)

As described earlier in section 6.2 on page 30, the wiki provide functionality to make a click-
able traceability between the di�erent requirements, as shown in Figure 6.5 on the next page
this gives a overview of dependencies when something has to be changed. Due the process
de�ning the requirements the project group have discovered that the traceable structure has
been valuable. The possibility to trace a system level requirement all the way back to the
use case, ease the work when something has to be rede�ned because it is easier to achieve the
overview of which other requirements the change a�icts on.

The new wiki structure can be found at: http://krav.uninetwork.dk.

http://krav.uninetwork.dk�

36 6.5. FINAL SYSTEM

Figure 6.5: An example of a user level requirement in the new wiki structure showing the trace to the
use cases (Parent Trace) regarding the requirement and the system level requirements (Child Trace)
that is derived from this requirement

It has been tried to implement a description of the interfaces into the Wiki structure, but this
work is not entirely �nished yet. This means that many of the interfaces has to be derived from
the system level requirements, and an Interface Control Document (ICD) must be created to
secure that the interface doesn't diverge.

7Requirement speci�cation

This chapter lists the user requirements to the MCC catagorized after the use cases in chapter 4
on page 23 to make the requirements backwards traceable. There is allocated 10 numbers for
the requirements to each use case e.g. from 1.21 to 1.30. This is considered enough to make it
possible to add more requirements later on. The accepttest speci�cation describing how to test
the requirements is available in appendix C on page 111.

Construct �ight plan

1.11 The MCC shall calculate a �ight plan telling which ground stations the satellite will pass
within a user speci�ed period below 24 hours.

1.12 The user shall be able to see the �ight plan as a table containing:

• GSS ID: GENSO administrator de�ned name
• GSS location: The country and city where the GSS is located.
• Pass start time: UTC time. DD-MM-YYYY HH:MM:SS
• Pass end time: UTC time. DD-MM-YYYY HH:MM:SS

And as a map containing:

• Satellite route printed on the map
• GSS ID: GENSO administrator de�ned name
• GSS location: Longitude (deg.minute) Latitude (deg.minute)
• Pass start time: UTC time. DD-MM-YYYY HH:MM:SS
• Pass end time: UTC time. DD-MM-YYYY HH:MM:SS

1.13 The user shall be able to chose which GSSes calculated �ight plan he attend to use.

1.14 The user shall be able to view the capabilities of each GSS in the �ight plan upon request.
The capabilities shall be (TBD):

• Frequency band(s)
• Modulation type(s)

Reserve �ight plan

1.21 The user shall be able to book the selected GSSes in the �ight plan. A booking shall be
identi�ed by:

38

• booking id

• MCC id

• GSS id

• Satellite id

• Start time for the reservation (UTC - unix timestamp)

• End time for the reservation (UTC - unix timestamp)

• Con�rmation status of the reservation

1.22 It shall be visible to the user which ground stations have accepted or rejected the reser-
vation.

Communicate with satellite

1.31 During a pass session the MCC shall provide an encrypted uplink channel to the GSS.
(TBD)

1.32 During a pass session the MCC shall provide an encrypted downlink channel to the GSS
(TBD)

1.33 (Deleted)

1.34 The MCC must store the uplink and downlink satellite mission data in a local database,
where a data packet shall be identi�ed by:

• Spacecraft ID (Same as NORAD satellite ID)

• Reception / transmission identi�er (�ag that de�nes whether the package is received for
the satellite or send to the satellite)

• Reception / transmission node ID (TBC)

• Reception / transmission time: hh:mm:ss dd-mm-yyyy

• Link budget estimation (TBD)

• Doppler-correction factor (TBC)

• S-meter value (if available). (TBC)

• Transmitted data (De�ned in the number package transmitted (TBD))

1.35 The GSS shall generate a pass report at the end of a communication session which is
requested by the MCC and shown to the user upon request. The report shall be stored
locally. The pass report contains:

• Booking id

• Packet count

39

• Start time of the pass (UTC)

• End time of the pass (UTC)

1.36 The connection status between the MCC and GSS shall be displayed to the user.

1.37 The user shall be able to view how much data has been transferred to and from the
satellite in the current session, and in total.

Control GSS

1.41 During a pass session the GSS settings shall be visible to the user. These settings are
(TBD):

• Radio frequency

• Doppler correction

• Antenna angle

1.42 Is shall be possible for the user to change the GSS settings

Con�gure MCC

1.51 The settings of the local MCC shall be visible to the user upon request (TBC)

1.52 The settings and informations regarding the local space craft must be visible to the user
upon request These settings are:

• Human-readable spacecraft name

• TLE object number

• Spacelink frequencies, modulations, powers, baud rates, and protocols

• Current MCC online (if there is one)

• Quality estimation of the spacecraft (TBD)

• Whether or not data is currently expected to be transmitted by the spacecraft

• List of a�liated GSSes (TBD)

• Total data downlinked for that spacecraft by the network as a whole

• Total data downlinked for that spacecraft by the a�liated GSS(es) (TBD)

1.53 Is shall be possible for the user to change the settings of the local MCC

1.54 Is shall be possible for the user to change the settings (de�ned in 1.52) of the local space
craft

Logon/logo� network

40

1.61 The MCC must provide a logon dialog with logon name and password (TBC)

1.62 The MCC must provide a logo� dialog (TBC)

Non use case

1.71 All communication between nodes in the network shall be passed in a human-readable
format.

1.72 All communication between software modules shall be passed in a human-readable format.

IIIDesign

8Design introduction

The overall layout of the GENSO system has already been determined by the GENSO projects
management team, as described in 1.1 on page 8. The system consists of MCCs, GSSes and
ASs as illustrated on Figure 8.1. Since satellites uses di�erent sets of commands and communi-
cation protocols, a satellite operator needs to design his own satellites application (also present
on Figure 8.1. This satellite application can then be used for satellite communication once
connected to the MCC.

ASMCC GSS

Application
 layer

GENSO
 layer

Internet
 layer Internet

 Satellite
Application

Figure 8.1: The �gure illustrates the main idea behind the GENSO project. The �gure is divided
into 3 logical layers. The application layer, the GENSO layer and the Internet layer. The solid
lines shows how the components of the GENSO layer are connected through the Internet. The
dotted line shows a data connection sending satellite mission data packets between the satellite
application and the satellite.

The application layer consists of the satellite applications and the satellite. The next layer is the
GENSO layer consisting of the main components of the GENSO network: MCCs, GSSes and
ASs. Beneath the GENSO layer is the Internet layer, which is the media used for communication
between the di�erent nodes of the GENSO network.

When a satellite operator wants to communicate with a satellite, the operator uses the MCC
to reserve a GSS. Through the MCC the operator informs when the communication with the
satellite has to be performed as well as which satellite to communicate with. The MCC analyzes
the entered information and calculates where and when the satellite passes a GSS connected to
the GENSO network. The result of the calculation is then returned to the satellite operator,
and he will know when he'll be able to communicate with the selected satellite. The operator

43

then waits until the satellite passes the selected GSS. When this happens the operator connects
the satellite application to a the MCC and the communication with the satellite can begin.

The nodes of the GENSO uses commands (or messages) to communicate with each other. These
commands are sent through the Internet as illustrated on Figure 8.2.

GENSO
 layer

Internet
 layer Internet

MCC AS GSS

Data Messages DataMessagesMessages

Figure 8.2: The �gure illustrates the components of the GENSO network. The solid lines represent
the messages sent between the nodes. The dotted lines represent satellite mission data packets
sent between the satellite application and a satellite. As shown the messages and the satellite
mission data packets are received on di�erent channels and treated di�erently. The satellite data
packages is forwarded to the above layer.(see Figure 8.1) The messages is handled at the �GENSO
layer�

Each type of node on the GENSO network has a set of tasks it has to ful�ll. The MCC is
the satellite operators access point to the GENSO network. By using the MCC the satellite
operator can send messages to other nodes of the GENSO network. The AS is responsible for
authenticating the nodes on the network. Storing list of participating GSSes and satellites is
also managed by the AS. That way a MCC can look up the address of a GSS when needed.
Each MCC and GSS has to be authenticated by the AS before they are registered as active
GENSO nodes. Once a node is authenticated, inter node communication from and to that
particular node, is possible.

The GSSes are the nodes responsible for the communication with a satellite. The satellite
operator uses the MCC to send satellite mission data to a GSS and these data are then sent to
the satellite by the GSS.

As described in the problem formulation (see chapter 3 on page 21) this project is concerned
with the MCC. The rest of this chapter explains the design of the MCC.

Before describing each individual module in further details, some general design methods used
in the design of the MCC. These method has in�uence on each module, which is why these
methods are introduced �rst.

9Design methods

The GENSO network is designed as a distributed system of nodes communicating with each
other. To explain this, and to enable the possibility of executing some of the MCC's modules on
separate hardware platforms, this is the main focus of section 9.1 where the distributed design
approach is explained in further details.

The inter modular messages between modules of the MCC shall use a human-readable format
as stated by user level requirement 1.72. It has been chosen to include this in the design by the
use of XML. Section 9.2 explains how XML is included in the design of the MCC.

9.1 Distributed system

As speci�ed previously the GENSO network consists of several types of nodes, namely an AS,
several MCCs and several GSSes. This implies that the GENSO network is a distributed system
using the Internet as the communication backbone.

Each node that can be contacted by other nodes in the network (in GENSO only AS and GSS)
has to specify it's global IP-address and port. Once a transmitting node knows the IP and port
of a receiving node, messages can be exchanged between the two nodes. The information about
other nodes' contact information, must be retrieved from a always known location, and this is
one of the main purposes of the AS.

The AS keeps track of each nodes contact information. Since it is only the GSSes that are
contacted, not the MCCs, the contact informations are kept in the GSSL. For each GSS the
GSSL contains:

• IP-address

• TCP/IP port

• GSS ID

as well as several additional values for each node (the GSSL is de�ned by the GSS and is
therefore To Be Determined (TBD)). This way each node only needs the IP-address and port
of the AS to know how to connect to all additional nodes on the network. Since all nodes needs
the GSSL it's practical to store this list centrally at the AS.

Another type of information that several nodes (particularly GSS's) on the networks needs, is
information of each satellite associated with the GENSO network. When a certain GSS needs

9.1. DISTRIBUTED SYSTEM 45

to communicate with a satellite, the GSS has to know which frequency and modulation to
use for the communication. The AS stores these values for each satellite in the PSL. That
way a GSS only needs to ask the AS to transmit the values for given satellite, before the GSS
communication is possible.

The AS in this distributed system has the potential risk of being a �single point of failure�,
and this needs to be considered. A MCC in the GENSO network would not be able to contact
any GSSes without the GSSL, but if the GSSL has been received once, only GSSes that have
changed their contact info will be unreachable. Authentication is another issue, and although
this is not considered in this project, it will be a problem if the AS is unavailable.

Although the GENSO network has a single point of failure risk, the distributed design solves
problems discovered in the GSMS system (see section 2.3.2 on page 19). The centralized schedul-
ing calculation in GSMS is distributed in GENSO because it is accomplished as a cooperation
between the GSSes and one MCC at a time instead.

In the chosen design it is not only the network that is distributed, this method is also used in
the module design of the MCC.

As stated in user level requirement 1.72 (see section 7 on page 37), the software modules must
be designed to communicate in a human readable format. Implementing such communica-
tion between independent software modules, must be done with some kind of Inter Process
Communication (IPC). If this IPC is chosen to be socket communication, the modules can
actually be distributed across a network as well as the nodes of the GENSO network. Since the
MCC will be used in various types of setups, this could be useful. Then it would be possible to
have some of the MCC's tasks executed on separate hardware platforms.

As an example the MCC uses a database for data storage. This database might be located on
a separate hardware platform, and the rest of the MCC modules gathered on another hardware
platform. This provides a MCC with a �exible design, allowing the MCC maintainer to choose
freely how to run it.

Separating the modules implies that each module needs to know how to contact the other
modules. This can be solved in with di�erent approaches, but in this project, and central
message handler is chosen to facilitate the communication. That way each module only has to
know the message handler, and the message handler can acts as a message router between the
modules, based upon module ID.

Now that the distributed design is explained, a way to solve the communication in a human
readable format must be chosen.

46 9.2. USING XML FOR COMMUNICATION

9.2 Using XML for communication

It has been chosen to use a particular way of communicating between the nodes in the network
(MCCs, GSSes and ASes) as well as between the di�erent software modules in the MCC. This
originates from the user level requirement 1.72 (see section 7 on page 37) stating that nodes and
modules must communicate in a �human readable� format. It has been chosen to use XML to
ful�l this requirement. This has already been proved succesfully used in the Mercury Ground
Station Network (MGSN) (see section 2.3.1 on page 18)

XML is explained like this at www.wikipedia.org (quote [16]):

The Extensible Markup Language (XML) is a W3C-recommended general-purpose
markup language that supports a wide variety of applications. XML languages or
'dialects' are easy to design and to process. They are also reasonably human-legible,
and to this end, terseness was not considered essential in its structure. XML is a
simpli�ed subset of Standard Generalized Markup Language (SGML). Its primary
purpose is to facilitate the sharing of data across di�erent information systems,
particularly systems connected via the Internet.

XML is de�ned by W3C1 in RFC3023 2

The reason for using XML is explained in the following sections

9.2.1 Features of XML

XML is a way of using text to describe and apply a tree-based structure to information. This
means that it is possible to save information as text, which is split into a hierarchy of �elements�
and �attributes� for these elements. The structure is achieved by the means of so called markup,
to indicate where a certain type in the document starts and stops. An example is given here:

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <re c i p e name="bread" prep_time="5 mins" cook_time="3 hours ">
3 <t i t l e>Basic bread</ t i t l e>
4 <ing r ed i e n t amount="3" un i t="cups">Flour</ i ng r ed i e n t>
5 <ing r ed i e n t amount=" 0 .25 " un i t="ounce">Yeast</ i ng r ed i e n t>
6 <ing r ed i e n t amount=" 1 .5 " un i t="cups" s t a t e="warm">Water</ i ng r ed i e n t>
7 <ing r ed i e n t amount="1" un i t=" teaspoon ">Sa l t</ i ng r ed i e n t>
8 <in s t r u c t i o n s>
9 <step>Mix a l l i n g r e d i e n t s together , and knead thoroughly .</ step>

10 <step>Cover with a c loth , and l eave f o r one hour in warm room .</ step>
11 <step>Knead again , p lace in a t in , and then bake in the oven .</ step>
12 </ i n s t r u c t i o n s>
13 </ r e c i p e>

1http://www.w3.org/XML/
2http://www.ietf.org/rfc/rfc3023.txt

9.2. USING XML FOR COMMUNICATION 47

[16]

The �rst line speci�es the XML document's �declaration�. This is optional, but gives information
about what version of XML is used, and the character encoding. The rest of the document
contains nested elements in the form:

1 <name a t t r i bu t e=" value ">content</name>

This means that each element has a start tag and an end tag, possibly surrounding other
elements or content. The start tags consists of a name surrounded by angle brackets (e.g.
<step>) and can also include attributes (e.g. <step attribute="step1">) which is speci�ed
like name-value pairs. The attribute values must always be quoted with either single or double
quotes. The end tag consists of the same name surrounded by angle brackets but with a leading
�/� (e.g. </step>). The content of an element can be everything that appears between the
start and end tag, including other �child� elements or text.[16]

An advantage when using XML to communicate, is that it is programming language inde-
pendent. Any language can implement the needed parsers and lexers to be able to read and
manipulate the XML. When the XML then is formed from a schema �le, both sides of the
communication agrees upon the format, and can exchange the needed information.

Actually it is not really needed to use a programming language, because one could just sent the
right formed XML as text from an application e.g. Telnet3.

Another advantage is that the XML is in a so called �human readable� format. This means that
the messages exchanged can be interpreted by humans without translations. This can make
debugging and testing easier.

9.2.2 XML and Object Oriented Programming

Since it is chosen to implement the Mission Control Client (MCC) in an object oriented pro-
gramming language, it is useful to know how XML can be used in an object oriented way. Each
di�erent object oriented programming language implements the usage of XML through their
own APIs, but the XML that is parsed is the same.

The �gure below shows how XML can be used in an object oriented way:

3http://www.ietf.org/rfc/rfc0854.txt?number=854

48 9.2. USING XML FOR COMMUNICATION

ExampleClass

+attributeOne: int

+anotherAttribute: String

+getAttOne(): int

+setAttOne(attOne:int): void

+getAnotherAtt(): String

+setAnotherAtt(anotherAtt:String): void

<?xml version="1.0" encoding="UTF-8"?>
<!-- Contains ExampleClass information -->
<ExampleClass
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="exampleclass.xsd">
<attributeOne>0</attributeOne>
<anotherAttribute>a string</anotherAttribute>
</ExampleClass>

Marshalling

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!-- XML schema description/comments. -->
 <xsd:element name="ExampleClass">
 <xsd:complexType>
 <xsd:sequence
 <xsd:element name="attributeOne" type="xsd:int"/>
 <xsd:element name="anotherAttribute type"xsd:string"/>
 </xsd:sequence>
 </xsd:complexType
</xsd:schema>

XML file exampleclass.xsd

Unmarshalling

The Internet

Sending stream

Receiving stream

exampleObject
<<ExampleClass>>

AttOne=0
AnotherAtt = "a string"

Figure 9.1: The �gure shows an abstract model of how to use XML for data and
communication exchange in an object oriented way. The xml schema �le (called
exampleclass.xsd) is used to translate the object ExampleClass into XML that can
be transmitted over the internet as a stream. The process of translating an object
to a xml �le, is called to �marshall� the object, and the other way is called to
�unmarshall� it. The class in the example is java speci�c.

Normally one would construct an object to hold the complex information that needs to be
stored and/or sent to make the application functional. This is also possible when using XML,
since the object is translated into XML directly using a schema (sometimes called �binding
de�nition�). So once the schema �le for the translation is constructed the class with the needed
info can be auto generated by the programming API. With an instance of the auto generated
class, the data can be saved as an object, and then the process of �marshalling� the data in
the object to XML is a matter of calling the programming API marshalling routine. Then the
XML can be sent via network, as a �le, or as it is usually done, via the Internet. The receiving
side can then read the XML (�le, stream etc.) and call the �unmarshalling� routine. Then the
receiving side has the same object to manipulate as started out in the sending side.

9.2. USING XML FOR COMMUNICATION 49

9.2.3 Summary

XML ful�l the given user level requirement by being human readable. At the same time XML
is a standard communication language, already implemented in various programming language
with usable APIs. It is a structured language, that makes it possible to represent various
datastructures, and it is possible to use XML in an object oriented way. This makes XML
usable for message communication in the GENSO project.

The following chapter will introduce the module design of the MCC, using XML for communi-
cation between modules.

10Module design

This chapter describes the design of the individual modules of the MCC. Based on the classi�-
cation of the requirement speci�cation in chapter 7 on page 37, the MCC has a logical structure
of internal software modules. The requirement speci�cation includes requirements about se-
curity, i.e. encrypted data channels and network logon. It has not yet been speci�ed which
encryption algorithm to use or how to authenticate nodes in generel in the GENSO network,
thus this project will not try to solve any security issues.

The modules of the MCC is shown in Figure 10.1 which is a view of the MCC as a clip from
Figure 8.2 on page 43 with communication arrows to the network and between modules. This
�gure will be used throughout the module design in the description of each module with a
highlighting of the current module and arrows to the interfacing modules.

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.1: The modules of the MCC. The dotted arrows are binary satellite mission data and the
solid arrows are XML messages. The �gure will be used throughout the module design to highlight the
current module.

Before the design sections of each module, a short description of the modules is given to give
an overview of the functionality. The MCC modules handles the following tasks:

User Interface
The User Interface module handles the interaction between the user (operator) and the GENSO
network. The User Interface module is implemented as a �thin client�, where all functionality
is actually carried out by the underlying modules. This means that a �book pass� button will
send an XML message to the Scheduler module. Implementing it like this, gives the possibility
to choose any other tool to send these messages. The User Interface module is described in
detail in section 10.1 on page 54.

51

Message Handler
The Message Handler module provides the interface for internal module communication and
internode communication in the GENSO network. The Message Handler acts as a �message
router� by forwarding messages from internal modules to GSS and AS nodes in the network,
and vice versa. The Message Handler also provides a �debug logon� facility to view all messages
sent in the MCC. The Message Handler module is described in detail in section 10.2 on page 65.

Scheduler
The Scheduler module handles the scheduling of GSS bookings. It provides the functionality
to use the Predict module to get information about available passes, and then present this to
the user via the User Interface module. The user can then choose which passes to book, and
the Scheduler module takes care of reserving these passes at each GSS. The Scheduler module
is described in detail in section 10.3 on page 72.

Predict
The Predict module handles the prediction of satellite passes over ground stations in the net-
work. This is achieved by communicating with the predict library, which makes the actual
prediction calculation, and then handing the calculated information to the Scheduler module.
The Predict module is described in detail in section 10.4 on page 84.

Database
The Database module provides an interface for storage of satellite mission data as well as book-
ing information and pass reports. The Database module is described in detail in section 10.5
on page 89.

Data Handler
The Data Handler provides a link between the GSS and the satellite application of the user. It
handles all the satellite mission data and forwards uplink from the satellite application to the
GSS and the Database module, and forwards downlink from the GSS to the Database module
and the satellite application. The Data Handler module is described in detail in section 10.6
on page 96.

UML view

UML o�ers two basic levels for encapsulation of functionality in object oriented software devel-
opment: Classes and packages. A class is an essential part of modeling the behavior of a system.
It describes an object type with regard to properties and behavior.[5] This way it is possible to
construct a model of real world elements which can be a high level abstraction of source code
structure. It makes it easier for non developers, but also developers to understand the system
for presentational purposes. The syntax of attributes and methods in the class diagrams in this
report follows the syntax of Java expressions as Java is chosen for implementation language in
this project.

52

A package in UML is a collection of other UML elements like classes or even other packages.
It also provides a namespace for the grouped elements which makes it possible to have more
elements with the same name, but in di�erent packages.[5]

In this project the modules of Figure 10.1 on page 50 are regarded as packages and each package
will be a grouping of classes. Figure 10.2 shows a diagram of the packages in the system and
the relationship between them. The distributed design choice with a possibility to split the
modules into di�erent locations implies that every module must be an individual program or
process.

 Scheduler

 Message Handler

 Database

 User Interface

<<import>>

<<import>>

<<import>>

 Predict
<<import>>

 Data Handler

<<import>>

Figure 10.2: The packages/modules in the MCC. Every package in the system depends on the package
"Message Handler" to communicate with each other and needs to import communication methods from
it.

Module design recipe

The design of each module will be de�ned in a generic recipe with the following subsections:

Module �gure: A module �gure like Figure 10.1 on page 50 with highlighting and interface
arrows.

Requirements: This will list and discuss the system level requirements of the current module
to specify in detail what the module shall do.

53

Descriptions and diagrams: This will discribe the �ow(s) of the module in UML activity
diagrams and the overall design of the module as a UML class diagram.

Interfaces: This will list and discribe the interfaces to the module related to input and provided
services.

Test speci�cation: This will specify a scenario for testing of the module functionality.

In the following sections the modules of the MCC is described

54 10.1. USER INTERFACE

10.1 User Interface

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.3: The �gure shows the User Interface modules in relation to the rest of the MCC. User
Interface has interfaces to all modules except the Data Handler module.

Figure 10.3 shows the User Interface module in the MCC. To be able to make use of the
GENSO network there has to be an interface available for the user. This is accomplished by
the User Interface module. The overall functionality of the User Interface module is listed in
the following:

• Con�gure the MCC

• Show satellite information

• Show the GSSes that can be used for communication with a speci�ed satellite

• Reserve the wanted GSS

• Adjust the radio and antenna con�guration at the GSS

To be able to provide this functionality, the User Interface module makes use of several other
modules: The Scheduler module, the Message Handler module, the Database module and the
Predict module. The User Interface module also communicates with AS and GSS, to accomplish
some of its tasks.

Besides the overall functionalities, it is the User Interface modules task to make sure that the
user input is valid, so possible failures are avoided throughout the system.

10.1.1 Requirements

The requirements stated in the user level requirements in chapter 7 on page 37 are derived to
nine system level requirements, that de�ne the functionality of the User Interface module. User
level requirements applicable for the User Interface module are; 1.11, 1.12, 1.21, 1.34, 1.35, 1.41,
1.42, 1.51, 1.52, 1.53.

10.1. USER INTERFACE 55

1.1.01 The User Interface module shall present an overview of previous satellite sessions that
are stored in the locale database. A satellite session is the data that has been received from
a satellite, and must be identi�ed by the following:

Item Data type:

Satellite ID String

GSS ID String (TBD)

Booking information ID String (TBD)

Pass Start time UNIX time stamp (TBD)

Pass End time UNIX time stamp (TBD)

To be able to have an overview over previously executed sessions, it is necessary for the user
to be able to distinguish between them. Therefore the User Interface module needs to be
able to present the above information for the user. This requirement descents from user level
requirements 1.34 and 1.35.

1.1.02 The User Interface module shall present a list of GSSes that the satellite passes within
a given time period. This information must be presented to the user in two formats:

• A table

• A two dimensional map

The table is created based on the following:

Item Data type:

GSS ID String (TBD)

GSS location String (TBD)

Pass start time UNIX time stamp (TBD)

Pass end time UNIX time stamp (TBD)

Frequency band Integer array (TBD)

Modulation type String array (TBD)

Capabilities String (TBD)

(TBD) (TBD)

The two dimensional map is created from the following information:

56 10.1. USER INTERFACE

Item Data type:

GSS location String (TBD)

Pass start time UNIX time stamp (TBD)

Pass end time UNIX time stamp (TBD)

Frequency band Integer array (TBD)

Modulation type String array (TBD)

Capabilities String (TBD)

GSS location coordinates Float array (TBD)

A raw sketch of the map view is given in Figure 10.4:

GSS-ID: Svalbard
Location: Svalbard, Norway
Capabilities:
xxx
xxx
xxx

Passes:
27-06-2007 23:25 until 27-06-2007 23:40
28-06-2007 00:55 until 28-06-2007 01:10

sat

Figure 10.4: The �gure shows a raw sketch of how the map presentation should be
implemented. The satellite path with available passes over three di�erent ground
stations can be seen, as well as how it is possible for the satellite operator to view
details of the ground stations.

This requirement is derived directly from the user level requirement 1.12.

1.1.03 The user shall be able to reserve a GSS, based on the following parameters:

10.1. USER INTERFACE 57

Item Data type:

Satellite ID String (TBD)

GSS ID String (TBD)

MCC ID String (TBD)

Booking ID Integer

Start time for reservation UNIX time stamp

End time for reservation UNIX time stamp

Con�rmation status of the reservation Boolean

Received by GSS status Boolean

These parameters combined with information about which GSS(es) the user has selected, are
used to create a booking information. A booking information contains all the necessary infor-
mation to create a booking (TBD). This requirement is derived from user level requirement
1.21.

1.1.04 The user must be able to con�gure the radio and antenna at the GSS he is currently
connected to, through the local User Interface module. The con�gurable parameters are:

Item Data type:

Radio frequency Float (TBD)

Doppler correction Float (TBD)

Antenna angle Float (TBD)

1.1.05 The User Interface module must show the current GSS con�guration. The con�guration
parameters are de�ned in system level requirements 1.1.04.

To be able to make necessary calibrations while a session is active, the user is given the option
to make manual adjustments to the GSS' communication hardware. User level requirement
1.41 and 1.42 derived these two requirements. As it is not clari�ed which functionality the GSS
o�ers, all available parameters are not represented.

1.1.06 The User Interface module must provide �elds for the user to enter the �ight plan
options. These options must be contained in the following form:

58 10.1. USER INTERFACE

Item Data type:

Satellite ID String (TBD)

Flight plan start time UNIX time stamp (TBD)

Flight plan end time UNIX time stamp (TBD)

The Scheduler module needs the time window and satellite ID where the user wishes to contact
the satellite, to be able to locate the GSSes that the user establish a communication session
with.

1.1.07 The User Interface module shall retrieve the current MCC con�guration and display it
to the user. The content of this con�guration is de�ned in user level requirement 1.51.

1.1.08 The User Interface module must be able to con�gure the MCC. These con�guration
parameters are given in 1.51.

These two system level requirements are derived from user level requirement 1.51 and 1.53,
respectively. The con�guration parameters are all marked with TBD, so no speci�cation can
be given, before it is clari�ed what can be con�gured on the MCC.

1.1.09 The User Interface module must present the con�guration for the selected satellite. The
contents of this con�guration is de�ned in 1.52.

This requirement is derived from user level requirement 1.52. The PSL contains information
about a given satellite, static as well as dynamic in form of statistics. This requirements gives
the user an overview of a given satellite.

10.1.2 Descriptions and diagrams

The main functionalities of the User Interface module are illustrated in this section through
activity diagrams.

Initialization and creation of the User Interface module

10.1. USER INTERFACE 59

Start XML listener
Program start

Create UI

XML
message
 received

[Kill signal]

XML
message
received

[Program running]

Handle XML

Figure 10.5: Activity diagram of the initialization of the User Interface module

Figure 10.5 shows how the User Interface module is initialized, when the user starts the module.
The �ow is as follows:

1. The user interface is created

2. An XML listener is started

3. Incoming XML messages are handled, until a kill command interrupt is received.

Request and show available GSSes

Validate user input
User request available passes

Send user input to Scheduler module

Draw satellite path on 2D map

Fill table with flight plan information Place GSS on 2D map

[Remaining GSSs]

[All GSSs showed]

Get satellite path Predict module

Scheduler module
Flight plan
received

Flight plan
received

Path
received

Path
received

Figure 10.6: Activity diagram of how available GSS are showed

When the user requests satellite passes for a given satellite within a given time span the activity
diagram in Figure 10.6 is executed. The �ow is as follows:

60 10.1. USER INTERFACE

1. The input is validated to see whether the user has entered a valid time period.

2. The request is sent to the Scheduler module for calculation of available passes.

3. The User Interface module requests a satellite path for the given satellite within the given
time period from the Predict module.

4. When both the path and available GSSes have been received, the User Interface presents it
all to the user.

Reserve GSSes

Confirm whether the booking is accepted

[All reservations executed]

Prompt user with answer

User reservs selected GSSs

Send booking information to Scheduler moduleCreate booking inforamtion

Respons
received

Scheduler module
Respons
received

[Remaining reservations]

Figure 10.7: Activity diagram of how a reservation is created

After the presentation of available GSSes, the user can select and reserve the ones that are
relevant. The reservation procedure can be seen in Figure 10.7. The �ow is as follows:

1. For each GSS the user has selected, a booking information is created.

2. The booking information is sent to the Scheduler module.

3. When all booking replies have been received, the information is showed to the user.

Show old sessions

10.1. USER INTERFACE 61

Show old sessions

Session list
received

Fill session inforamtion

[Remaining sessions]

[All sessions showed]

Request session list from database

Session list
received

Database module

Figure 10.8: Activity diagram of how old sessions are retrieved

Figure 10.8 shows the �ow of viewing old sessions that are available in the database. The �ow
is:

1. The User Interface module requests old sessions from the Database module.

2. When the sessions are received they are all showed to the user.

The system level requirements and the activities above can be classi�ed into �ve di�erent cat-
egories that together cover the functionality of the User Interface module. Each main category
is de�ned in the table below:

Category: system level requirements:

Con�gure the MCC 1.1.07 and 1.1.08

Show satellite information 1.1.09

Show and reserve GSS 1.1.02, 1.1.03 and 1.1.06

Con�gure the MCC 1.1.04 and 1.1.05

Show overview of old sessions 1.1.01

These categories derive the �ve class diagrams that can be seen in Figure 10.9 on the next page.

62 10.1. USER INTERFACE

Init

-connectedToMCC: boolean = false

-createAndInitiateUI(): void

+initMessageHandler(): void

ConfigureSatellite

-getSatelliteConfigurationFromAS(): void

+showCurrentSatellietInforamtion(currentSatelliteInformation:PSL): void

ViewLog

-requestOverviewOverOldSessions(): void

-retrieveOldSession(): void

+showOldSessionToUser(bookingInformation:BookingInformation,
 passReport:PassReport): void

ConfigureMCC

-sendNewConfigurationToMCC(): void

-requestCurrentConfiguration(): void

+showCurrentConfigurationToUser(currentConfiguration:MCCConfiguration): void

ViewAndReserveGSS

-requestAvailableSatellites(): void

-reserveGSS(): void

+showAvailableSatellitesToUser(availablePassesList:AvailablePasses[]): void

+showResponsOnRequestToUser(bookingRespons:BookingInformation): void

+getSatellitePath(userDefinedPredictOptions:UserDefinedPredictOptions): void

ControlGSS

-manualControlActivated: boolean = false

-requestCurrentConfiguration(): void

-sendNewConfigurationToGSS(): void

+showCurrentGSSToUser(currentGSS:GSSConfiguration): void

Figure 10.9: Class overview for the User Interface module package

Beside the �ve classes that illustrate the above mentioned categories, there is a init class that
takes care of creating the user interface and initializing a XML message handler. This is needed
to receive responses on the request made by the user. Depending on what the user wants to
do, a corresponding class is utilized to execute the needed functionality.

10.1.3 Interface

The interface section covers which modules the User Interface module needs to interact with,
to provide the above mentioned functionality. The User Interface module's interface within the
MCC are described �rst.

The Scheduler module

When the list containing possible satellites has to be shown, the Scheduler module sends a �ight
plan. The �ight plan must contain the following:

1 <FlightPlan>

10.1. USER INTERFACE 63

2 <gssID></gssID>
3 <gssLocation></gssLocation>
4 <startTime></startTime>
5 <endTime></endTime>
6 <gssFrequencyBand></gssFrequencyBand>
7 <gssModulationType></gssModulationType>
8 <gssCapabilities></gssCapabilities>
9 <gssLocationLatitude></gssLocationLatitude>

10 <gssLocationLongtitude></gssLocationLongtitude>
11 <gssLocationAltitude></gssLocationAltitude>
12 </FlightPlan>

In addition, the Scheduler module is able to send a response on GSS reservations. This must
look like the following:

1 <bookingList>
2 . . .
3 <BookingInformation>
4 <bookingID></bookingID>
5 <gssID></gssID>
6 <mccID></mccID>
7 <satID></satID>
8 <startTime></startTime>
9 <endTime></endTime>

10 <receivedByGSS></receivedByGSS>
11 <timeslotConfirmed></timeslotConfirmed>
12 </BookingInformation>
13 . . .
14 </bookingList>

Database module

When the Database module sends an overview of old sessions, it sends two lists, a booking
information and a pass report. The booking information can be found just above, while the
pass report is de�ned in section 10.5.3 on page 94.

To be able to collect some of the information that needs to be showed, the User Interface module
needs to interact with instances of the GSS and AS:

AS

The AS can send a PSL, to show the information about the di�erent satellites.
1 <PSL>
2 <satel l iteID></ satel l iteID>
3 <tleObjectNumber></tleObjectNumber>
4 <spacecraftInformation>
5 <frequency></frequency>

64 10.1. USER INTERFACE

6 <modulation></modulation>
7 <power></power>
8 <baudRate></baudRate>
9 <protocol></protocol>

10 </spacecraftInformation>
11 <currentMCCOnline></currentMCCOnline>
12 <qualityEstimation></qualityEstimation>
13 <listOfAffiliatedGSS>
14 . . .
15 </ listOfAffiliatedGSS>
16 <totalDownlinkData></totalDownlinkData>
17 <totalUplinkData></totalUplinkData>
18 </PSL>

GSS

To make it possible to give the user an overview of the current radio and frequency settings the
GSS has to send the current con�guration to the User Interface module. The following gives a
suggestion to the XML:

1 <GSSConfiguration>
2 <frequency></frequency>
3 <dopplerCorrection</dopplerCorrection>
4 <antennaAngle></antennaAngle>
5 </GSSConfiguration>

10.2. MESSAGE HANDLER 65

10.2 Message Handler

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.10: The modules of the MCC. Current module is the Message Handler that interfaces to all
other modules in the MCC and to the GSS and AS

Figure 10.10 shows the Message Handler module in the MCC. The Message Handler module
is responsible for controlling inter node as well as inter module communication. The point of
having a Message Handler module is that other nodes in the GENSO network only have to
communicate with one module, and having a central module to handle module communication
instead of creating a direct connection from module to module. This means that the Message
Handler module will receive XML messages from instances of the GSS and from instances of
the AS. These messages will be forwarded to the appropriate modules. The Message Handler
module will also be responsible for sending XML messages to other nodes in the network,
meaning that another module in the MCC sends a command to the Message Handler module,
which forwards it to the appropriate instance of the GSS or AS. The Message Handler module
will act as a �message router� in the MCC, meaning that all messages will go through here.
This gives a possible debugging facility, if it is possible to log on to the Message Handler module
and view all messages sent.

10.2.1 Requirements

User level requirements 1.71 and 1.72 has requirements to the Message Handler module (see 7
on page 37). A set of system level requirements has been constructed to match the user level
requirements. The system level requirements are explained one by one with reference to the
user level requirements.

1.1.15 When a GENSO XML message is sent to another node in the network the Message
Handler module shall keep the connection and wait for a reply until this is received as GENSO
XML, or until 10 seconds (TBD) timeout period. The message will be a stream of characters.

1.1.16 The Message Handler module shall, upon request from other modules, send all outgoing

66 10.2. MESSAGE HANDLER

GENSO XML messages. These messages shall be sent over a TCP/IP connection on the port
speci�ed in the GSSL or ASL to the IP address given in either the GSSL or the ASL, as a
stream of characters.

These requirements relates to user level requirement 1.71 stating that the nodes in the network
have to communicate in a human readable format. To achieve this a format of the readable text
has to be chosen. This format is de�ned in the interface requirement (i.6) regarding GENSO
XML:

i.6 The GENSO XML shall be de�ned as a .xsd �le, derived from the w3 standard for XML
schemes:

http://www.w3.org/2001/XMLSchema

The XML version shall be 1.0 and the encoding of characters shall be UTF-8

The .xsd �le is as follows:

(TBD)

The GENSO XML messages are sent as a stream of characters, via the Internet, over a TCP/IP
connection. The port and the IP address are found in the GSSL for the GSS nodes and in the
ASL for the AS nodes. All messages sent in the GENSO network, are initiated by the clients,
and since the MCC acts as client for both the GSS and the AS, all communication with other
nodes are initiated by the MCC. The connection will be initiated by the MCC, the XML
message will be sent, and the connection will be held until a response is received, or a timeout
is reached.

1.1.17 The Message Handler module shall listen for, and accept incoming MCCmodule GENSO
XML messages. These messages shall be sent over a TCP/IP connection on port 6124 (TBD
standard port) or a user speci�ed port, as a stream of characters.

1.1.18 The Message Handler module shall send outgoing MCCmodule GENSO XMLmessages.
These messages shall be sent as a stream of characters.

These requirements relates to user level requirement 1.72, stating that all software modules in
the MCC shall communicate in a human readable format. The messages exchanged are de�ned
the same way as the messages sent between the nodes in the network.

10.2.2 Descriptions and diagrams

To describe the design of the Message Handler module, two types of UML diagrams are used. An
activity diagram to describe the �ow of the module, and a class diagram to show the structure
of the module. First the activity diagram in Figure 10.11 on the next page is described.

10.2. MESSAGE HANDLER 67

listen for modules module connects

xmlmessage
received

get type

get ip and portsend xml

remove header
from xml

get module id

spawn new module handler

set reference
 to other module

handlers

[no more modules]

[more modules]

wait for start

start module
 handlers

start module
handlers

send xml

remove header
from xml

wait for
debug logon
or kill signal

set debug

[debug logon]

thread

main

[no debug]

send xml
to debug

[debug]

[no debug]

send xml
to debug

[debug]

[type internal]

kill threads

[type external]

[kill signal]

Figure 10.11: The �gure shows the activity diagram for the Message Handler module.

The program �ow is as follows:

1. The Message Handler module starts, and listens for connections from other modules

2. When a module connects, a ModuleHandler thread is created with connection to that mod-
ule. The thread is not started.

3. The two previous steps are repeated until all modules have signed in.

4. When all modules have signed in, references to all other ModuleHandler threads are passed
to each ModuleHandler thread.

5. All threads are started, and messages can be exchanged.

68 10.2. MESSAGE HANDLER

6. The ModuleHandler threads enters a loop where they receive, handle and sends messages
based upon the headers.

7. If someone logs on to the debug channel, a copy of all messages with headers will be sent to
that connection.

8. The Message Handler module �ow ends when the program is killed.

This program �ow has to be designed object oriented, and this design is represented with a
class diagram in Figure 10.12:

MessageHandler

+moduleTable: ModuleHandler[5]

+moduleConnection: Socket[5]

+main(args[]:String): void

<<thread>>

ModuleHandler

-debug: static boolean = false

-moduleTable: ModuleHandler[5]

-debugChannel: static OutputStream = null

+ModuleHandler(moduleConnection:Socket)

+setDebug(debug:boolean): void

+setModuleHandlerRef(reference:ModuleHandler,
 moduleid:int): void

+setDebugChan(debugchannel:OutputStream): void

+determineType(incomingXml:String): void

+sendInternal(moduleID:int): void

+sendExternal(ip:InetAddress,port:int): void

+run(): void

1

5

Figure 10.12: The �gure shows the class diagram for the Message Handler module. Two
classes has to be implemented. One to act as the initial Message Handler application,
spawning the threads needed to handle communication to the other modules.

The �rst class in the Message Handler module, is the MessageHandler class, used to start the
Message Handler module. This class only consists of a main method, used to invoke instances
of ModuleHandler when another module signs in to the Message Handler module.

The ModuleHandler class is extended from the thread class, to make all instances of it run as
a thread. The ModuleHandler threads are spawned when a module connects to the Message
Handler module, and used to control the message connection to each module. A ModuleHandler
thread listens for incoming GENSO XML messages, and takes care of sending them to the right
receiver. The receiver can be either another module, or another node in the network, and this
di�erence has to be handled.

The method sendInternal is used to send XML to other modules. Since there are 5 other
modules to send messages to, a module ID has to be provided. Each module must provide a
module ID when they log on to the Message Handler module. The module ID is an integer
from 0 to 4 and the mapping is as follows:

10.2. MESSAGE HANDLER 69

Module name: moduleID integer:

Scheduler module 0

Predict module 1

Data Handler module 2

User Interface module 3

Database module 4

When a connection is established to the Message Handler module, the �rst object received must
be an integer de�ning the module ID, otherwise the connection must be shut down and has to
be started again.

The method sendExternal (see Figure 10.12 on the preceding page) is used to send messages
to another node on the network. Since no persistent connection exists to other nodes, one has
to be started each time a message has to be sent. This requires that the IP address and port
number is speci�ed. When the connection has been made, and the GENSO XML message has
been sent, the connection has to be kept alive to wait for a message reply or as long as the
timeout period de�nes.

The method determineType (see Figure 10.12 on the facing page) is used to �gure out if the
message is of internal or external type. This is read from the XML message as the header
information (see section 10.2.3 on the next page), put there by the sending module. The header
must also contain information about the receiver of the message. If type is external, the IP and
port number, and if type is internal a module id.

At last the method setModuleHandlerRef (see Figure 10.12 on the facing page) is used to pass
references to all other modules connected to the Message Handler module, to the ModuleHandler
threads. This information will be saved as stated in table 10.2.2, in the array of ModuleHandler.
That way each ModuleHandler thread can lookup which thread to send a message to.

The attribute called debug (see Figure 10.12 on the facing page) is used to determine whether
someone has connected to get all the messages that is exchanged in the Message Handler
module. The variable is static, which makes it possible to change the value of it in all instances
of ModuleHandler at once. That way the sendInternal and sendExternal methods can check
for debug, and send messages to the debug connection if it is present. This is done via the
static attribute debugchannel(see Figure 10.12 on the preceding page) which holds the output
stream to the debug viewer.

70 10.2. MESSAGE HANDLER

10.2.3 Interface

The command interface to the Message Handler module is de�ned as the following XML mes-
sages:

Listing 10.1: Example of a XML message sent to a MCC module
1 <GENSOmsg>
2 <msgHeader>
3 <type>in t e r n a l</type>
4 <moduleID>2<moduleID>
5 </msgHeader>
6 <msgPayload>
7 . . .
8 </msgPayload>
9 </GENSOmsg>

Listing 10.2: Example of a XML message sent to another node in the GENSO network
1 <GENSOmsg>
2 <msgHeader>
3 <type>ext e rna l</type>
4 <IP>86 . 58 . 135 . 161</IP>
5 <port></port>
6 </msgHeader>
7 <msgPayload>
8 . . .
9 </msgPayload>

10 </GENSOmsg>

The other interfaces that the Message Handler module provides, are de�ned as stream connec-
tions over TCP/IP.

Modules in the MCC must implement the following:

TCP/IP connection on port 6124 and IP address of Message Handler

Outgoing character stream for sending XML

Incoming character stream for receiving XML

First character send must be a integer number stating module ID

Other nodes in the network must implement the following:

Accept TCP/IP connection on IP address and port speci�ed in either GSSL or ASL

Incoming character stream for receiving XML

Outgoing character stream for sending XML

10.2. MESSAGE HANDLER 71

The debug application can connect, after the modules, on a TCP/IP connection on port 6124,
and read all XML messages sent as a stream of characters.

72 10.3. SCHEDULER

10.3 Scheduler

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.13: The modules of the MCC. Current module is the Scheduler module.
As shown The Scheduler module communicates with all the others modules using
XML messages.

The Scheduler module is the module responsible of handling the planning and booking of a
communication session. Furthermore the module is responsible for watching for upcoming con-
�rmed passes and initiate the communication session. As shown in Figure 10.13 the Scheduler
module interacts with all the other modules using XML.

10.3.1 Requirements

To subtract the system level requirements to the module the user level requirements regarding
scheduling have to be identi�ed. This lead in into the user requirements de�ned in table 10.1

1.11 1.12 1.14 1.21 1.22 1.33 1.32

Table 10.1: The user level requirements that in�ict on the development on the
scheduler module

The system level requirements can then be derived:

1.1.30 The MCC shall upon request of a �ight plan calculation request and receive the GSSL
from the AS.
The GSSL is formed as a GENSO XML message containing the following informations of
each GSS:

10.3. SCHEDULER 73

Variable name: Type name:

GSS id String

IP String

Port int

Location string

Latitude �oat

Longitude �oat

(TBD)

To ful�ll user requirement 1.11 the Scheduler module shall be able to predict which ground
stations the satellite passes. Therefore the Scheduler module needs to know which ground
stations there are available in the network. This is done by asking the AS for an updated list
of GSSes in the network.

1.1.32 The MCC shall book each pass, selected by the user in the �ight plan, at the regarding
GSS. The booking request is a GENSO XML containing:

Variable name: Type name:

booking id int

MCC id String

GSS id String

Satellite id String

Start time for the reservation UNIX time stamp

End time for the reservation UNIX time stamp

Con�rmation status of the reservation boolean

Received by GSS status boolean

As speci�ed in user requirement 1.21 the user shall be able to book the selected GSS, therefore
the Scheduler module makes a booking request to each GSS the user wishes to book.

1.1.33 The MCC shall request capabilities from each GSS in the �ight plan
The capabilities are:

� Frequency band(s) - int array (TBD)

74 10.3. SCHEDULER

� Modulation type(s) - String array (TBD)

� (TBD)

As speci�ed in user requirement 1.14 the user shall be able to view the capabilities of each GSS.
Therefore the Scheduler module request capabilities of each GSS in the �ight plan calculated
by the Predict module.

1.1.34 The calculated �ight plan and the capabilities of each GSS shall be returned to the User
Interface module The �ight plan is a GENSO XML message containing:

Variable name: Type name:

GSS ID String

GSS location String

Pass start time UNIX time stamp

Pass end time UNIX time stamp

GSS location coordinates �oat array

The capabilities are de�ned in system level requirement 1.1.33
User level requirement 1.12 applies that the �ight plan constructed in requirement 1.1.38 and
the capabilities described in requirement 1.1.33 shall be parsed to the User Interface module.

1.1.35 After a reservation of a pass the MCC must await a con�rmation/denial status from
the GSS and write the status and the booking informations into the Database module. If the
connection times out the status will be registered as denied. The status is the same XML
message as used in the booking request with the �con�rmation status of the reservation� �eld
updated. The content of the XML message is described in requirement 1.1.32

The user requirement 1.22 speci�es that the status of a booking shall be visible to the user, in
order to achieve that, the Scheduler module registers the status from each GSS, the information
is stored in the database.

1.1.36 The Scheduler module must poll the Database module every minute (TBD) to monitor
if there is a upcoming pass within the next 5 minutes (TBD). If this is the case the Scheduler
module sends an XML message to the Data Handler module to initiate the connection. The
XML message contains:

� GSS IP address String

� GSS connection port int

10.3. SCHEDULER 75

User requirements 1.32 and 1.33 speci�es that a port shall be opened when a communication
session begins. The Scheduler module polls the Database module to check when it is time to
initiate a pass. When it is time the Scheduler module activate the Data Handler module.

1.1.37 The Scheduler module uses the Predict module to calculate the �ight plan. The Sched-
uler module sends a GENSO XML message to the Predict module containing:

Variable name: Type name:

Satellite ID String

GSSL TBD

Start time UNIX time stamp

End time UNIX time stamp

The Scheduler module receives a GENSO XML message with the following result from the
Predict module in GENSO XML:

Variable name: Type name:

GSS ID String

Pass start time UNIX time stamp

Pass end time UNIX time stamp

To ful�ll user requirement 1.11 the GSSes in the satellite path in a given period has to be found.
The Predict module is used to do that.

1.1.38 When the Predict module has calculated the GSSes in the satellite path, the Scheduler
module must ask every GSS for the passover time of the satellite, and use that information
to create the �ight plan.

The information about available passes in user requirement 1.12 is provided by requesting a
list of passes from each GSS that is calculated as being in the satellite path. In that way the
information about available passes shown to the user, is only containing calculated informations
from the selected GSS. In that way the Predict module is only used to �lter the amount of
GSSes to ask for passes.

1.1.39 After each pass, a pass report shall be requested and received by the Scheduler module.
The pass report is a GENSO XML message containing:

76 10.3. SCHEDULER

Variable name: Type name:

Booking id int

Packet count int

Start time of the pass UNIX timestamp

End time of the pass UNIX timestamp

The Scheduler module must after each ended communication session send a request to the GSS
to receive a pass report.

10.3.2 Descriptions and diagrams

After the de�nition of the requirements a derivation of the design is performed. This is done
by identifying the �ow in the module and identifying the services the module o�ers to other
modules, as well as the services the module uses in other modules.

The �ow is presented in three activity diagrams

• Construct �ight plan (Figure 10.14 on the facing page)

• Book GSS (Figure 10.15 on page 78)

• Monitor upcoming satellite passes (Figure 10.16 on page 79)

Construct �ight plan

10.3. SCHEDULER 77

Request GSSL

Call predict

Request Passes and capabilities

Lookup IP and port on GSS

Fork a thread for each GSS in the satellite path

From GSS

Receive passes
and capabilities

Receive passes
and capabilities

Start timeout timer

Kill unfinished processes and
mark their result with timeout

wait until timeout is reached

Merge capabilities
and passes from

each GSS into flightplan

Send flight plan to
User Interface

module

Thread
main

From predict

Receive
GSSL

Receive
GSSLFrom AS

[timeout]

[timeout]

Send timeout error

Receive ground
stations in satellite path

Receive ground
stations in satellite path

Fligt plan request from
User Interface

module

Figure 10.14: UML activity diagram showing the �ow of constructing a �ight plan
in the Scheduler module

The program �ow of constructing a �ight plan is as follows:

1. A �ight plan is requested by the User Interface module

2. The GSSL is requested and received from the AS. If the AS does not respond, a timeout
error is send to the User Interface module

3. The Predict module is called with the GSSes in the GSSL and a response containing the
GSSes in the satellite path is returned. If the Predict module does not respond, a timeout
error is send to the User Interface module

4. The Scheduler module spawns a thread for each GSS in the predicted satellite path and look
up the IP and port of the GSS.

5. Each thread establishes connection to a GSS and request a prediction of passes and the

78 10.3. SCHEDULER

capabilities of the GSS. If a GSS does not respond within the timeout period the thread is
killed and a timeout mark is appended to the GSS

6. The received satellite passes, capabilities and timeout marked GSSes is merged into one
�ight plan and the plan is send to the User Interface module

Book GSS

Reserve GSS request from the
User Interface module

Lookup IP and port on GSS

Request booking

Send booking status to Database module
 and The User Interface module

Receive booking
status

Receive booking
status

[Timeout] Send timeout error to
User Interface module

From GSS

Figure 10.15: UML activity diagram showing the �own of a booking performed by
the Scheduler module

The program �ow for a booking a GSS (Figure 10.15) is as follows:

1. The Scheduler module receives a request on a booking for one satellite pass. (If the user
have selected several GSSes this function is called multiple times)

2. The Scheduler module looks up the IP and port of the GSS and sends a booking request to
the GSS. If the GSS does not respond the �Received by GSS status� is set to false.

3. The status of the booking is send to the Database module and the User Interface module

Monitor upcoming satellite passes

10.3. SCHEDULER 79

Request booking informations
in Database

From DB

Receive
booking informations

Check for pass within 5 minutes

sleep one minuteTell Data Handler module to
establish connection

wait pass time

Request pass report

From GSS
Receive

pass report
Receive

pass report
Send pass

report to the Database module

Receive
booking informations

[no]

[timeout]

[timeout]

Send timeout error

Tell User Interface module
and Database module
that a communication

session has begun

Tell User interface module
and Database module

that the communication
session is closed

[yes]

Figure 10.16: UML activity diagram showing the �ow of the Scheduler module
monitoring for upcoming reserved passes

The program �ow for �monitoring of upcoming reserved passes� (Figure 10.16) is as follows:

1. The Scheduler module request the list of upcoming reserved passes from the Database mod-
ule. If the Database module does not respond, a timeout error is send to the User Interface
module

2. The Scheduler module checks if there are any passes within the next �ve minutes, if not it
sleeps one minute

3. If there are any upcoming passes within the next �ve minutes, the Data Handler module is
told to initiate a communication session with the regarding GSS.

4. The User Interface module module and the Database module is told that a communication
session is started

5. The Scheduler module waits the period of the pass

6. The User Interface module and the Database module is told that the session is over and a
pass report is requested from the GSS. If the GSS does not respond a timeout error is send
to the User Interface module

7. Finally the pass report is sent to the Database module

80 10.3. SCHEDULER

Services of the module

To ease the design of the Scheduler module the services of the module are identi�ed. The
Scheduler modules receive the following informations and commands from other modules and
external nodes:

1. A GSSL from the AS

2. Predicted GSSes in the satellite path from the Predict module

3. Passes of the satellite on a speci�c GSS and the capabilities of the GSS from the speci�c
GSS

4. Booking informations containing con�rmed satellite passes from the Database module

5. Pass report from a GSS

6. Booking status telling if the booking is con�rmed or not, from the GSS

7. A �ight plan request from the User Interface module

8. A booking request from the User Interface module

The Scheduler module sends the following information to the other modules or nodes

1. A �ight plan containing the GSSes that the satellite passes, the time window of each pass
and the capabilities of the GSSes in the satellite pass. This is sent to the User Interface
module.

2. A message to the Message Handler module to start a communication session.

3. A message to the User Interface module and Database module that a communication session
has started.

4. A message to the User Interface module and Database module that a communication session
has ended.

5. A pass report to the Database module.

6. The status of a requested booking .

Class diagram of the Scheduler module

The �ow in the Scheduler module leads into the determination of the class diagram in �gure
10.17

10.3. SCHEDULER 81

Scheduler

-gssl: Gssl

+bookGroundStation(bookGSS:BookingInformation)

+bookingStatus(gssStatus:BookingInformation)

+constructFlightplan(userPredictOptions:UserPredictOptions)

+receiveFlightplan(availablePassesList:AvailablePass[])

+receivePassAndCapFromGSS(gssCalculations:GSSCalculations)

+watchConfirmedBookings()

+receiveConfirmedBookings(bookingList:Bookinginformation[])

+main(args[]:String): void

Figure 10.17: UML Class diagram showing the content of the Scheduler module
pack

The class diagram contains methods solving the three �ows, the incoming information is handled
in separate methods in order to let an incoming message handler call a function matching the
incoming message.

10.3.3 Interfaces

The Scheduler module interface description handles the interfaces to the Scheduler module,
meaning the XML messages that is received from external nodes and modules. The messages
send to the module is derived in �service of the module� and listed in the same order:

Listing 10.3: The GSSL received from the AS
1 . . .
2 <GSS>
3 <GSSID></GSSID>
4 <IP></IP>
5 <port></port>
6 <location></ location>
7 <Latitude></Latitude>
8 <Longitude></Longitude>
9 . . .

10 </GSS>
11 . . .
12 </GSSL>

82 10.3. SCHEDULER

Listing 10.4: Predicted GSSes in the satellite path from the Predict module
13 . . .
14 <AvailablePass>
15 <groundStationId></groundStationId>
16 <sate l l i teId></ sate l l i teId>
17 <startTime></startTime>
18 <endTime></endTime>
19 </AvailablePass>
20 . . .
21 </availablePassesList>

Listing 10.5: Passes of the satellite on a speci�c GSS and the capabilities of the GSS from the speci�c
GSS

22 <groundStationId></groundStationId>
23 <sate l l i teId></ sate l l i teId>
24 <startTime></startTime>
25 <endTime></endTime>
26 <capabi l it ies></ capabi l i t ies>
27 <GSSCalculations>

Listing 10.6: Booking informations containing con�rmed satellite passes from the Database module
28 . . .
29 <BookingInformation>
30 <bookingID></bookingID>
31 <gssID></gssID>
32 <mccID></mccID>
33 <satID></satID>
34 <startTime></startTime>
35 <endTime></endTime>
36 <receivedByGSS></receivedByGSS>
37 <timeslotConfirmed></timeslotConfirmed>
38 </BookingInformation>
39 . . .
40 </bookingList>

Listing 10.7: Pass report from a GSS
1 <passreport>
2 <bookingID></bookingID>
3 <startTime></startTime>
4 <endTime></endTime>
5 </passreport>

10.3. SCHEDULER 83

Listing 10.8: A �ight plan request from the User Interface module
1 <UserPredictOptions>
2 <satID></satID>
3 <startTime></startTime>
4 <endTime></endTime>
5 </UserPredictOptions>

Listing 10.9: Booking status telling if the booking is con�rmed or not, from the GSS
1 <BookingInformation>
2 <bookingID></bookingID>
3 <gssID></gssID>
4 <mccID></mccID>
5 <satID></satID>
6 <startTime></startTime>
7 <endTime></endTime>
8 <receivedByGSS></receivedByGSS>
9 <timeslotConfirmed></timeslotConfirmed>

10 </BookingInformation>

Listing 10.10: A booking request from the User Interface module
1 <BookingInformation>
2 <bookingID></bookingID>
3 <gssID></gssID>
4 <mccID></mccID>
5 <satID></satID>
6 <startTime></startTime>
7 <endTime></endTime>
8 <receivedByGSS></receivedByGSS>
9 <timeslotConfirmed></timeslotConfirmed>

10 </BookingInformation>

This concludes the interfaces of the Scheduler module. The next module to be described is the
Predict module.

84 10.4. PREDICT

10.4 Predict

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.18: The modules of the MCC. Current module is Predict. As shown the Predict module
communicates with the User Interface module and the Scheduler module using XML messages.

The main purpose of the Predict module is to o�er an interface for the Scheduler module,
to calculate satellite passes for a given satellite over a given ground station. These passes are
de�ned by the speci�c satellites path around the Earth. The background of Predict is described
in Appendix A on page 105. It is possible to calculate the satellite's position at a given time
from the orbit. John A. Magliacane, KD2BD has developed a software library to support these
special needs. Figure 10.18 shows the Predict module in the MCC.

10.4.1 Usage of Predict library

Predict is an open-source, multi-user satellite tracking and orbital prediction program written
under the Linux operating system[8]. This means the program is able to calculate a satellite
position, from a given set of keplerian elements. This set of elements are contained in Two Line
Element set (TLE), which is maintained by CelesTrak (part of the Center for Space Standards
and Innovation (CSSI)).

The TLE is a mathematical description of a satellite orbit, including launch year and satellite
name. An example of a NORAD TLE could be:

Line 0 : AAU CUBESAT
Line 1 : 1 27846U 03031G 06333.55058209 .00000050 00000−0 43268−4 0 8499
Line 2 : 2 27846 98.7185 340.4346 0008797 291.2307 68.7941 14.20848903177184

Line 0 is a descriptive and unique name of the satellite. Line 1 and 2 is the standard TLE, with
an integrated checksum. Each column is described in appendix B on page 109.

Like a TLE, each ground station also needs a location speci�cation. This is handled with a
QTH �le in Predict. QTH is a code representing a location in radio telegraphic language. The
location description is a set of latitude, longitude and altitude coordinates representing the

10.4. PREDICT 85

placement of the ground station antenna. The QTH �le also includes a call sign or name of the
ground station for identi�cation. An example of a QTH-�le could be:
Line 0 : AAUGND
Line 1 : 57 .1
Line 2 : −9.85
Line 3 : 13

10.4.2 Requirements

From user level requirements 1.11 and 1.12, the following system level requirements is derived,
which speci�es the functionality of the Predict module.

1.1.45 To predict the passes of the host spacecraft over the stations in the network the MCC
needs to know:

� Satellite ID (32 Character CelesTrack string)

� Ground Station List

� Start and end time of the time window in UNIX timestamp

This describes the basic information needed to execute the Predict library. The timestamps
are needed to get all possible passes within the time window. This is achieved by calling the
Predict library with the start time, which returns the �rst pass. The end time of the �rst pass
is then used to predict the next pass. This loop continues until the end time speci�ed by the
user has been reached.

1.1.46 Predict must calculate the spacecraft path in coordinates, supporting the availability
to draw the path on a map at a given time window. The time window must be speci�ed in
UNIX timestamp, by a start and an end timestamp.

In order to draw the map, a time window is needed. The satellite ID will refer to the TLE set
produced by Celestrack.

10.4.3 Description and diagrams

86 10.4. PREDICT

[getSatPass]

Extract GS location from GSSL to QTH-file

Get/extract TLE information for satellite
from CelesTrack to TLE-file

Execute Predict application
with QTH,TLE and time parameters to get passes

Parse text output from Predict and
add to/create XML message

Send XML message to requesting module

[getSatPath]

Execute Predict application
with TLE and time parameters to get path

Parse text output from Predict and
add to/create XML message loop on GS in

GSSL

Wait for XML message

XML message recieved - extract command

Get/extract TLE information for satellite
from CelesTrack to TLE-file

Log on to Message Handler

Figure 10.19: UML Activity diagram specifying Predict module �ow

The UML activity diagram (see �gure 10.19) shows the �ow of the module. There are two
possible ways through the module.

getSatPass �ow The Scheduler module passes a XML message to Predict. The Predict
module will then receive the message, parse it and extract the command inside the XML
message. If the command is getSatPass, a loop is entered, in which the ground station and
satellite information will be extracted.

The Predict library needs TLE and QTH information as �les, therefore is it necessary to create
these �les before executing the library. When these �les are created, an execution of the library
will take place, including the time information given by the content of the message.

After execution the output from the Predict application is parsed and put in the XML message

10.4. PREDICT 87

speci�ed by the interface description. The loop then continues and the next available ground
station will produce a new element in the passes list.

getSatPath �ow When receiving a getSatPath message, the Predict library only needs the
TLE of the satellite and a time window. Then Predict is executed once to get the satellite path.
The returning list with coordinates of the satellite has to be parsed into XML before sending
the message in return.

With the requirements and �ow in mind, it is possible to construct the UML Class diagram
for Predict class. External communication will go through the interfaces which is all ready
described.

Predict

+main(String[] args): void

-predictPass(GSSL:gssl,satId:string,timeStart:timestamp,
 timeStop:timestamp): void

-predictPath(satId:string,timeStart:timestamp,
 timeStop:timestamp): void

-sendXml(data:string): void

Figure 10.20: UML Class diagram for Predict module

The UML class diagram shows the 4 methods inside the module. Each Predict method will
be invoked by the main method, and the sendXml method will handle communication between
the Predict module and the Message Handler module, by sending requested information back
to the requesting module.

10.4.4 Interfaces

The Predict module interfaces with the Scheduler module by providing a list of predicted
passes for the time window speci�ed by the request. The Predict module interacts with the
User Interface module as well, providing a coordinate list telling where the satellite is at a given
time. This will give the User Interface module the ability to draw the entire path of the satellite
orbiting the Earth. All interfaces shall be implemented in XML.

• The Scheduler module will have to provide an XML message including the satellite ID as a
string, a GSSL and a time window speci�ed by start and end time in UNIX timestamp. The
following XML example will de�ne the interface:

1 <predictRequest>
2 <command>getSatPass</command>
3 <sate l l i teId></ sate l l i teId>
4 <startTime></startTime>

88 10.4. PREDICT

5 <endTime></endTime>
6 <gsslList>
7 . . .
8 <gsslItem>
9 <Id></Id>

10 <Latitude></Latitude>
11 <Longitude></Longitude>
12 <Altitude></Altitude>
13 </gsslItem>
14 . . .
15 </gsslList>
16 </predictRequest>

• The User Interface module will have to provide an XML message including the satellite ID
as a string and the time window in UNIX timestamp. Whenever the request is processed,
the Predict module will return an XML message to the requesting module. The request has
to ful�ll the following XML speci�cation:

1 <predictRequest>
2 <command>getSatPath</command>
3 <sate l l i teId></ sate l l i teId>
4 <startTime></startTime>
5 <endTime></endTime>
6 </predictRequest>

10.4.5 Test speci�cation

It will be assumed in the test that the Predict library is tested properly by the developers of the
library. This test will be based on comparing output from the Predict application calculations
with the output from the Predict module. It is then possible to test whether the Predict module
can calculate one pass correctly. The test must send an XML message to the Predict module
containing information connected to a known TLE and QTH �le. The exact same informations
must be provided to the Predict application as well. The two outputs can then be compared.

The same procedure must be performed for a set of ground stations in a GSSL, to test whether
the Predict module is able to �nd a set of ground stations which the satellite will pass. At least
one of the known ground stations must be out of range in the given time window. The returned
XMl message must not contain the ground station being out of range.

10.5. DATABASE 89

10.5 Database

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.21: The Figure shows the Database module and the modules the Database module interfaces
with. The Database module communicates with the Scheduler and User Interface module. During a
satellite transmission the Database module receives satellite mission data from Data Handler module
as well.

Various types of data are exchanged between the nodes of the GENSO network, as well as
between the di�erent modules in the MCC. The user level requirements speci�es that some of
these data types has to be stored in a database. On the MCC this is handled by the Database
Module, shown in Figure 10.21, and the possible data types are:

• a booking information

• a pass report

• a satellite mission data packet

For each data type the Database module has to provide the following functionality:

• Store the data type in the database

• Retrieve the data present in the database and send it to the requesting module

• Change the values of stored data types in the database

10.5.1 Requirements

User level requirements 1.21, 1.22, 1.34, 1.35 and 1.37 (see chapter 7 on page 37) have speci�-
cations involving the Database module. To comply and ful�ll these user level requirements, it
has been necessary to make a set of system level requirements. These system level requirements
will now be described one by one with reference to the matching user level requirement.

1.1.60 A satellite mission data packet consists of the following variable types:

90 10.5. DATABASE

Variable name: Type name:

spacecraft id String

direction boolean

reception / transmission node id String

reception / transmission time (UTC) UNIX timestamp

link budget estimation (TBD) int

Doppler-correction factor �oat

S-meter value (if available) int

transmitted data byte

The format of a satellite mission data packet is speci�ed in user level requirement 1.34.

As long as the above format is used, the Database module knows what to expect to receive
from the Data Handler module. User level requirement 1.34 speci�es that uplink and downlink
data from satellite communication sessions has to be stored in the database. The Data Handler
module is responsible for the communication between the user and the GSS. This module then
has to forward each satellite mission data packet to the Database module.

1.1.61 A booking shall be stored in a database. The variables in a booking uses the following
variable types:

Variable name: Type name:

booking ID int

MCC ID String

GSS ID String

Satellite ID string

Start time for the reservation (UTC) UNIX timestamp

End time for the reservation (UTC) UNIX timestamp

Con�rmation status of the reservation int

User level requirement 1.21 speci�es that the user has to be able to book a previously selected
�ight plan. This booking has to be stored in the database and as such it is necessary to specify
the variable types used to represent a booking. The format of a booking is de�ned in user level
requirement 1.21.

10.5. DATABASE 91

1.1.62 The Database module shall retrieve bookings from the database when requested by the
User Interface module.

The User Interface module needs to show booking informations to the user. These booking
informations have to be retrieved from the database by the Database module and then sent to
the User Interface module. The format of these messages is speci�ed in user level requirement
1.21 and the variables used to represent a booking are de�ned in system level requirement
1.1.61.

1.1.63 The pass report shall be stored in the database. The following variable types are used
to represent a pass report:

Variable name: Variable type:

booking ID int

packet count int

start time (UTC) UNIX timestamp

end time (UTC) UNIX timestamp

The format of a pass report is speci�ed in user level requirement 1.35.

The GSS generates a pass report once a communication session with a satellite has ended. This
pass report is then sent to the MCCs Scheduler module when requested. Once received, these
reports has to be stored in the database.

1.1.64 Pass reports shall be retrieved from the database when requested. The format of a pass
report is speci�ed in user level requirement 1.35 and the variable types representing a pass
report are speci�ed in system level requirement 1.1.63.

Pass reports has to be retrieved from the database and shown to the user by the User Interface
module. The pass reports sent between the User Interface module and the Database module
will use the format speci�ed in user level requirement 1.35.

Now that the requirements have been speci�ed it is possible to construct an activity diagram
and subsequently a class diagram of the Database module.

10.5.2 Descriptions and diagrams

An activity diagram of the Database module can be seen in Figure 10.22 on the following page.

92 10.5. DATABASE

initialization

determine sender

insert data type
into database

change values for
specified data type

in database

[change<data-type>]

get data type from database

return data type
to sender

[send<data-type>]

[insert<data-type>]

message from
Message Handler

message from
Message Handler

[wait for a new message]

Analyze the message

Figure 10.22: The �gure shows the activity diagram of the Database module.

The following steps can be seen on Figure 10.22:

1. The Database module is initialized

2. The module enters a loop where the module waits until a message is received from the other
modules through the Message Handler module

3. Once a message arrives, the message is analyzed and the contents of the message determines
how the module proceeds

4. If the message is an insert message the following occurs:

(a) The values from the message is inserted in the database for the speci�ed data type.

(b) The module enters its waiting loop again

5. If the message is a change message the following occurs:

(a) The values for the speci�ed data type are changed in the database.

(b) The module enters its waiting loop again

10.5. DATABASE 93

6. If the message is a send message the following occurs:

(a) The sender of the message is determined
(b) The speci�ed data type is extracted from the database
(c) The result is returned to the sender of the original message.
(d) The module enters its waiting loop again

Now that the activity diagram has been described it is possible to construct a class diagram of
the Database module (see Figure 10.23).

Database module

Database

-init(): void

-insertBookingInformation(booking:BookingInformation)

-changeBookingInformation(booking:BookingInformation)

-sendBookingInformation(bookingId:int)

-insertPassReport(passReport:PassReport)

-changePassReport(passReport:PassReport)

-sendPassReport(passReportId:int)

-insertSatelliteMissonData(satelliteMissionData:SatelliteMissionData)

-changeSatelliteMissionData(satelliteMissionData:SatelliteMissionData)

-sendSatelliteMissionData(satelliteMissionDataId:int)

Figure 10.23: The �gure shows the class diagram of the Database module. For each data type
the Database module has to handle, there are corresponding insert-, change- and get<data
type>-methods.

The init() method is executed when the Database module is started. Con�guration and the
initialization is managed by this method. The following methods in the class diagram are all
concerned with the Database modules interaction with the other modules of the MCC. For
each data type the Database module has to handle, there are three corresponding methods:

• insert<data-type>()
Used to insert a given data type in the database.

• change<data-type>()
Used to change a given data type that has already been added to the database previously.

• get<data-type>()
Used to retrieve a given data type from the database.

where <data-type> is either a booking information, a satellite mission data packet or a pass
report.

Now that the design of the Database module has been explained, it is possible to specify the
interfaces of the Database module.

94 10.5. DATABASE

10.5.3 Interfaces

The Database module receives messages from the Scheduler module when e.g. a booking infor-
mation needs to be inserted in the database. A message that has to do with booking information
will contain the following:

1 <BookingInformation>
2 <bookingID></bookingID>
3 <gssID></gssID>
4 <mccID></mccID>
5 <satID></satID>
6 <startTime></startTime>
7 <endTime></endTime>
8 <receivedByGSS></receivedByGSS>
9 <timeslotConfirmed></timeslotConfirmed>

10 </BookingInformation>

If the message deals with a satellite mission data packet from the Data Handler module the
message will contain:

1 <SatelliteMissionData>
2 <spacecraftID></spacecraftID>
3 <direction></direction>
4 <rtNodeID></rtNodeID>
5 <rtTime></rtTime>
6 <linkBudgetEstimation></linkBudgetEstimation>
7 <dopplerCorrectionFactor></dopplerCorrectionFactor>
8 <sMeterValue></sMeterValue>
9 <transmittedData></transmittedData>

10 </SatelliteMissionData>

And if the message involves handling of a pass report, the message will contain:

1 <PassReport>
2 <bookingID></bookingID>
3 <packetCount></packetCount>
4 <startTime></startTime>
5 <endTime></endTime>
6 </PassReport>

10.5.4 Test speci�cation

To make sure that the Database module ful�lls the requirements speci�cations, it is necessary
to perform a module test. The module will be tested by a set of scenarios, where each scenario
tests part of the modules functionality. This implies that a blackbox test will be used.

The Database module interacts with the Scheduler, Message Handler and Data Handler mod-
ule as well as the User Interface module. These modules will be used to test the Database

10.5. DATABASE 95

module. By sending messages from the modules to the Database module and then comparing
the messages XML contents with the actual data stored in the database, data consistency can
be con�rmed.

Testing the Database modules handling of booking informations

The �rst scenario tests the Database modules handling of booking information. This will be
tested through the following steps:

• insertBookingInformation() test

1. Create a booking information with predetermined content in the Scheduler module.
2. The Scheduler sends the insert booking information message to the Database module.

The Database module should then insert the booking information in the database once it
receives the message from the Scheduler module.

3. Use the User Interface module to control that the booking information has been inserted
correctly by having the User Interface module show the previously inserted booking.

4. If the User Interface module shows the expected output, the Database modules
insertBookingInformation() method has passed its test.

• changeBookingInformation() test

1. Change every variable in the previously used booking information except for the booking
id. This has to remain unchanged.

2. Send the booking information in an update message from the Scheduler module to the
Database module.

3. Verify that the values in the database has been changed to the new values of the booking
information, by having the User Interface module display the booking information once
more.

4. If the User Interface module displays the expected output the changeBookingInformation()
has passed its test.

• sendBookingInformation() test

1. The User Interface module transmits a send booking information message, with the pre-
viously used booking id, to the Database module.

2. If the message returned from the Database module is equal to the output that where
display during the changeBookingInformation() test, the sendBookingInformation()
has passed its test.

The same procedure can be used to test the Database modules handling of pass reports and
data packets. The only di�erence being, that the Data Handler module should be used instead
of the Scheduler module to test the Database modules handling of satellite mission data packet.

96 10.6. DATA HANDLER

10.6 Data Handler

Data handler

Predict

Scheduler
Message
Handler

User
Interface

Database

GSS GSS/AS

Satellite
Application

Figure 10.24: The modules of the MCC. Current module is the Data Handler module. The Data Handler
module communicates with the Scheduler module and the Database module via XML messages. The
Data Handler module also has connections to the Database module as well as a GSS and a Satellite
Application to forward binary data.

The Data Handler module shall provide an interface for the user to connect his own Satellite
Application. The purpose of the Data Handler module is to forward the satellite mission data
between the the Satellite Application and the GSS while logging it in the MCC database.
Because the satellite mission data must be handled binary it can not be added directly to
an XML message. This implies that the Data Handler module must have direct access to the
Database module and the GSS without going through the Message Handler. Figure 10.24 shows
the Data Handler module in the MCC.

10.6.1 Requirements

Requirement 1.31, 1.32, 1.34 in the requirement speci�cation in chapter 7 on page 37 relates to
the Data Handler Module. To ful�ll these, the following requirements are de�ned as the base
for the design of the Data Handler Module.

1.1.75 The Data Handler module shall connect to a GSS socket on IP address and port number
provided by the Scheduler

1.1.76 The Data Handler module shall provide a server socket for satellite mission data on
port 6125 (TBD)

Requirement 1.31 and 1.32 states an uplink and downlink connection to the GSS. The Data
Handler Module needs to know which GSS it must connect to, and when to connect. The
Scheduler holds this information as it has made the reservation. The server socket is for the
Satellite Application to connect to.

10.6. DATA HANDLER 97

1.1.77 All satellite mission data shall be forwarded to the Database on port 6126 (TBD)

1.1.78 All satellite mission data shall be forwarded to the local server socket on port 6125
(TBD)

This is for logging of the satellite mission data in the database as stated in requirement 1.34.
This satellite mission data must also be forwarded to the Satellite Application of the user to
ful�ll requirement 1.32.

1.1.79 The downlink satellite mission data shall be read 1 byte at the time (TBD) from the
GSS socket

Every 1 byte (TBD) is regarded as a packet of satellite mission data for simplicity. The packet
size must be a trade o� between delay of bu�ers to �ll up and overhead in the network.

10.6.2 Description and diagrams

The �ow of the Data Handler Module is shown in the activity diagram in Figure 10.25 on the
next page. It shows the initialization of the Data Handler Module and one pass of satellite
communication. The details of the diagram are described below.

1. The Data Handler Module connects to the Message Handler module.

2. A local server socket is created waiting for the user to connect his Satellite Application.

3. When a communication session is starting, the Scheduler module provides IP address and
port number to connect to.

4. Connections to the Database module and GSS are created.

5. The tasks of listening and sending to the GSS are split into two threads as read and write
of satellite mission data to forward, is asynchronous.

6. The two threads each forwards the satellite mission data to the the Database byte by byte.

7. When the communication session is over, the Data Handler Module is told to close the
external connections by the Scheduler.

98 10.6. DATA HANDLER

Log on to
Message Handler

Create local
server socket

Connect to GSS

Listen for downlink
data stream

Send uplink
data stream

Write uplink data
to database

and GSS

Write downlink data
to database and

Satellite Application

Accept connection from
Satellite Application

From

scheduler

Connect to
database

[more data] [more data]

[end]
[end]

Communication
session starting

Communication
session starting

Figure 10.25: Activity diagram of the Data Handler Module. It shows the initialization and one satellite
communication session.

After the �ow is determined a class diagram of the Data Handler Module can be constructed.
This is shown in Figure 10.26. It consist of a main class DataHandler and a thread class
DataForwarder. The two instances of DataForwarder forwards uplink and downlink satellite
mission data respectively.

DataHandler

-dbSocket: Socket

-satAppSocket: ServerSocket

-gssSocket: Socket

+DataHandler()

+main(args[]:String): void

+connectGSS(address:InetAddress,port:int): void

+connectMessageHandler(address:InetAddress,
 port:int): void

+connectDatabase(address:InetAddress,port:int)

<<thread>>

DataForwarder

+DataForwarder(dbSocket:Socket,inSocket:Socket,
 outSocket:Socket)

+toDatabase(satData:byte): void

+toSocket(socket:Socket,satData:byte): void

+run()

1

2

Figure 10.26: UML Class diagram of the Data Handler module

10.6.3 Interfaces

The Data Handler Module is connected to the Message Handler module as well as any other
internal MCC modules. Through the Message Handler module it has interface to the Scheduler
module. This provides the Data Handler Module with GSS IP addresses and port numbers.
The following messages is accepted:

10.6. DATA HANDLER 99

Listing 10.11: The XML for the start messages
1 <dataHandlerRequest>
2 <action>s t a r t</action>
3 <IP>83 . 234 . 9 5 . 3 2</IP>
4 <port>6128</port>
5 </dataHandlerRequest>

Listing 10.12: The XML for a stop message
1 <dataHandlerRequest>
2 <action>stop</action>
3 <IP>83 . 234 . 9 5 . 3 2</IP>
4 <port>6128</port>
5 </dataHandlerRequest>

Furthermore the Data Handler Module has socket interfaces with binary data streams to the
following modules and applications:

GSS
For receiving and transmitting satellite mission data (binary)

Database
For logging of all satellite mission data (binary)

Satellite Application
For the user to communicate with the satellite (binary)

10.6.4 Test speci�cation

An implementation of the module needs to be tested to make sure that the functionality is
as the stated in the requirements. The following scenario describes a module test of the Data
Handler Module.

1. The Data Handler Module and implementations of Message Handler, Database and GSS is
started

2. The Data Handler Module must be supplied with an input to start a session from the Message
Handler module.

3. It must be veri�ed that the Data Handler Module then provides a server socket on 6125
(TBD)

4. It must be veri�ed that the Data Handler Module connects to the Database module on port
6126 (TBD) and the GSS on port supplied by the Message Handler module.

5. It must be veri�ed that all data from the GSS is forwarded to the Database module and the
server socket byte by byte.

100 10.7. DESIGN CONCLUSION

6. It must be veri�ed that all data from the server socket is forwarded to the GSS and the
Database module byte by byte.

10.7 Design conclusion

The design of the MCC has now been described. General methods used throughout the design
has been explained, and each module of the MCC has been described individually. As explained
in chapter 6 on page 30, the supplied requirement speci�cation by the GENSO project is still
under preparation. This has also had impact on the design of the MCC.

The design in this report is not complete. As it can been seen in the requirements speci�cation,
several items needs to be either con�rmed (TBC) or to be determined (TBD). As such the design
isn't ready for implementation yet. Further iterations needs to be made before the design can
be considered complete.

This is also re�ected in the fact that the design of the individual modules isn't at the same
stage for each module e.g. interfaces has been speci�ed for some modules, but not for the other
modules. It hasn't been possible to construct a complete and detailed test speci�cation for
every module either.

Although the design is not entirely complete, it is still usable. Two general methods has
been used in the design of the MCC. Making the design distributed enables the possibility of
executing each module on a separate hardware platform if needed. The use of XML has the
advantage of human-readable inter module messages, thereby enabling easy access to debug
information and manual control. Since the Message Handler handles incoming XML messages,
it is also possible to develop new applications that interact with the MCC. This is possible as
long as the new applications uses the interfaces and XML de�ned by the design of the MCC.

Each module description includes one or more activity diagrams and a class diagram. These
diagrams de�nes a �rst iteration of which functionality needs to be implemented in each module.

As speci�ed previously further iterations will be needed to complete the design. These iterations
should besides, completing the requirement speci�cation, also result in a ICD with traceable
interfaces for each data type and method used in the MCC. To complete the design of the MCC,
a design of the GSS and the AS must also be present to dertermine the complete GENSO ICD.

11Conclusion

The GENSO project aims at creating a large scale distributed network of ground stations to
facilitate student satellite communication. This network can expand the overall communication
with a given satellite making a satellite mission more e�cient. The principles of such a network
has been implemented an used in practice by other universities and space agencies. However,
GENSO wishes to create the network with a new design and additional features.

This project group has chosen to design the Mission Control Client (MCC) node of the GENSO
network, the other nodes being a Ground Station Server (GSS) and an Authentication Server
(AS). To accomplish this, the group has participated in the structuring of the GENSO require-
ment speci�cation. Through this a use case analysis of the MCC has been made to create a link
between the GENSO objectives and the requirements. Furthermore the GENSO requirements
structure has been implemented in a DokuWiki to make a division in subsystems and to make
the requirements traceable.

Due to the incomplete de�nitions of the nodes in the GENSO network, the actual requirements
however, are not complete, entirely testable or detailed enough to complete the design at this
point. The current result of this project is therefore incomplete with no implementation and
test results. The state of the design is what it was possible to achieve with the work e�ort on the
requirement structure an the fact of the project duration of both this project and the GENSO
project. The duration of this project is one semester while GENSO has a work schedule of 2 1

2

years.

This project is to be regarded as a �rst iteration of the MCC in the GENSO project. The work
of the project group does not take account of a number of the GENSO requirements as it was
chosen to leave it out in the �rst iteration of the system. It has been accomplished to make a
design of the MCC as far as possible according the GENSO requirement speci�cation. It should
now be possible for the GENSO project to be inspired and to continue the work of developing
a large scale distributed system of ground stations.

12Perspectives

The perspectives of this project are many, but the main concern would be evaluation of the
GENSO project and it's in�uence of this AAU project. The GENSO project has already from
the start been di�erent from ordinary projects at Aalborg University.

In this project the GENSO team has been considered as customer, providing wishes and re-
quirements to the product. This product development has been estimated to 2 1

2 years of work
by the GENSO team, which of course gives some problems when an AAU project group tries to
implement it all in a one semester. In the start of the semester, the group has expected a fully
speci�ed requirements document provided by the GENSO team, but it was early realized that
it was necessary to join the requirements work to construct a usable requirements speci�cation.
This has of course a�ected the implementation of the whole project.

A possible alternative to the strategy used in the project could be a more speci�c project de�ned
by Aalborg University. The project group have used a lot of time de�ning the project. If the
project has been more de�ned from start, it would properly reach the implementation state.

The recommendation from the project group to the GENSO team, based on experience working
with the project will then be:

• Start with small iterations of the system, which makes it possible to implement a base system
which is ready for expansion afterwards. This would make it possible to have an overall view
of the whole system, implementing features step by step.

• The workpackage division would have to be much later in the project, making everybody
work on the requirements and initial design. When the design and features are �xed, the
workpakages can be de�ned by logical design parts with strictly de�ned interfaces.

• Use more speci�c dedicated time on requirements, de�ning what is really needed for the �rst
beta version of the software. This groups experience is that trying to implement everything
by waterfall model would not do the job.

If this group were continuing with the project, the next step would probably be to �nish design
of the MCC by resolving the TBCs and TBDs from the requirements. The will of course
have in�uence on the design section. It would be impossible to develop and implement the
system from the requirements that were presented at �rst. The implementation, of the system
speci�ed by a real requirements speci�cation, will be done by using iterative development. This
is usually be mentioned as the spiral method. It is the groups conviction that this is the best
way implementing such software project as GENSO.

Bibliography

[1] Stephen Biering-Sørensen. Håndbog i Struktureret Program Udvikling. Ingeniøren bøger,
1st edition, 2002. ISBN: 87-571-1046-8.

[2] Bo Andersen, Claus Grøn, Rasmus Hviid Knudsen, Claus Nielsen, and Kresten Kjær
Sørensen. Documentation for SSETI-Express and AAUSAT-II Ground station. Aalborg
Universitet, 2004. Project period: September 2nd - December 17th.

[3] CelesTrack. CelesTrack TLE description. http://www.celestrak.com/columns/v04n03/,
2006. Accessed 20.12.06.

[4] DokuWiki. DokuWiki. http://wiki.splitbrain.org/wiki:dokuwiki, 2006. Accessed
20.11.06.

[5] Hans-Erik Eriksson. UMLTM 2 Toolkit. Wiley Publishing Inc., 2004. ISBN: 0-471-46361-2.

[6] ESA. Types of orbit. http://www.esa.int/esaSC/SEMU4QS1VED_index_0.html, 2006.
Accessed 20.12.06.

[7] James Cutler, Peder Linder, and Armando Fox. A Federated Ground Station Network.
Stanford University, 2002. Space System Development Laboratory.

[8] KD2BD John A. Magliacane. Predict website. http://www.qsl.net/kd2bd/predict.
html, 2006. Accessed 20.12.06.

[9] Kristian Edlund, Martin Nygaard Kragelund, Rasmus Stougaard Nielsen, Axel Gottlieb
Michelsen, and Martin Green. Mission Control Center. Aalborg Universitet, 2004. Project
period: September 2nd - December 17th.

[10] Neil Melville. GENSO Implementation Plan. pdf on CD-ROM, 2006.

[11] Neil Melville. GENSO Objectives and Preliminary Requirements. pdf on CD-ROM, 2006.

[12] NORAD. Website. http://www.norad.mil, 2006. Accessed 20.12.06.

[13] Mercury Design Team. Mercury Ground Station Reference Model � Version 0.2.0. http:
//mgsn.sourceforge.net/docs/mdoelv0.2.0.php, 2002. Accessed 20.12.06.

http://www.celestrak.com/columns/v04n03/�
http://wiki.splitbrain.org/wiki:dokuwiki�
http://www.esa.int/esaSC/SEMU4QS1VED_index_0.html�
http://www.qsl.net/kd2bd/predict.html�
http://www.qsl.net/kd2bd/predict.html�
http://www.norad.mil�
http://mgsn.sourceforge.net/docs/mdoelv0.2.0.php�
http://mgsn.sourceforge.net/docs/mdoelv0.2.0.php�

104 BIBLIOGRAPHY

[14] James R. Wertz. Mission Geometry; Orbit and Constellation Design and Management.
Microcosm Press and Kluwer Academic Publishers, 1st edition, 2001. ISBN: 1-881883-07-
8.

[15] Wikipedia. Satellite. http://en.wikipedia.org/wiki/Satelite, 2006. Accessed
20.12.06.

[16] Wikipedia. XML. http://en.wikipedia.org/wiki/XML, 2006. Accessed 20.12.06.

http://en.wikipedia.org/wiki/Satelite�
http://en.wikipedia.org/wiki/XML�

ASatellite trajectories

Student satellites, and communication satellites in general, are always �ying in orbits around
the Earth, and these orbits are also known as geocentric orbits[15]. The physical principles for
keeping the satellite in orbit are due to:

• the centripetal force

• the satellites high velocity

The centripetal force is due to the gravitational force between the satelites and Earth (see
Figure A.1). Due to the Earth's larger mass when compared to the mass of the satellite the
force is inward towards the center of Earth as shown on the �gure.

Perigee

Apogee

x

Fcetripetal

Fvelocity

Figure A.1: The �gure shows the di�erent forces acting on the satellite and thereby
keeping the satellite in its trajectory. The gravitational force causes an inward
force, while the satellites velocity causes an outward force.

The satellite travels with a high velocity (several km/s) and thereby causes a outward force to
act on the satellite. Once the inward and outward forces acting on the satellite are equal, the
satellite will keep it's trajectory, which is illustrated by the dotted kurve on Figure A.1.

The type of orbit, a given satellite is in, can be described by characteristics such as the satellites
altitude, the satellites inclination to Earths equator and the direction in which the satellite orbits
Earth[6]. Depending on a satellites altitude above Earth it can be classi�ed in the following
categories:

• Low Earth orbit (in the range from 0 - 2000km).

106

• Medium Earth orbit (in the range from 2000 - 35786km).

• High Earth orbit (above 35786km).

Besides the satellites altitude the orbit can also be classi�ed according to it's inclination (see
Figure A.2):

• Polar orbit (where the satellites inclination is (or close to) 90 degrees).

• Polar Sun-synchronous orbit (same as polar orbit but the satellite passes equator at the same
local time at each pass).

Equator

A
B

I

C

b

a

c

Figure A.2: The �gure shows the di�erent types of inclination orbits. A polor orbit
is marked by A and the corresponding 90◦angle a. B and the angle b shows a
prograde orbit with an inclination angle less than 90◦. Finally C and the angle c
shows a retrograde orbit with an inclination angle above 90◦.

If the satellite follows Equator and thereby has an inclination of 0◦the orbit isn't inclined. If
the inclination is less than 90◦the satellites orbit has the same direction as the Earth rotates,
also know as a prograde orbit. If the inclination is more than 90◦the orbit is called a retrograde
orbit.

The type of orbit, a given satellite uses, dependings on what type of applications the satellite
is expected to do. If it's a weater satellite that has to monitor the weater in Europe fx., the
satellite is put into a geostationary orbit. If it's a student satellite, with a small power supply,
the satellite uses a Low Earth Orbit, to lower the use of power for communication between the
satellite and the ground station (as well as lowering the cost of launch) .

107

Once the satellite is in orbit the ground station needs to know when a satellite passes above
the ground station. This can be calculated since satellite trajectories are always elliptic. This
will be further described below.

Due to the low budgets used on student satellites, the satellites are usually launched as �cargo�
on commercial launches. The student satellite is encapsulated in a launch pod and this pod
is then ejected from the launch rocket when the rocket reaches the right altitude. Finaly the
student satellite is ejected from the pod by a feather mechanism. Therefore it is impossible to
predict the satellites actual trajectory pre-launch time.

The North American Aerospace Defense Command(NORAD)[12] observes space and will report
observations of newly discovered objects. The observations made by NORAD can then be used
to calculate the student satellites trajectory.

Once a satellite has been observed three times in it's orbit, it is possible to calculate the six
Keplerian quantities:

• Semi-major axis

• Eccentricity

• Inclination

• Argument of perigee

• Time of perigee passage

• Celestial longitude of the ascending node

The eccentricity of an ellipse is de�ned as the distance between the two foci devided by the
major axis. The eccentricity is actually a measurement for how much an ellipse deviates from
a circle (a circle has a eccentricity of zero.).

Perigee and apogee are also important terms when describing satellite trajectories. Perigee is
the term used for the point in a satellites trajectory, where the satellite is closest to Earth.
Apogee is used for the point where the satellite is farthest away from Earth.

The terms semi-major axis, eccentricity and inclination has already been explained above.
The point on the trajectory where the satellite crosses the planets equatorial plane is called
the ascending node if the satellites trajectory goes towards North. The point is called the
descending node if the satellite passes towards South (see Figure A.3 on the next page).

The argument of perigee is the argument of the perigee from the ascending node. The time of
perigee passage is equal to the time when the satellite passes perigee and last quantity is the
ascending nodes longitude.

108

Figure A.3: The �gure shows a satellites trajectory around the Earth. The dotted
area is the Earths equatorial plane. Υ shows the direction of the vernal equinox.
The angle Ω is measured in the equatorial plane, while ω is measured in the orbit
plane. a shows the orbits semi major axis and the angle i the inclination. [14, p.
47]

The student satellites from AAU are in orbits classi�ed as Polar Low Earth orbits with an
altitude of approximately 850 km and an inclination of approximately 90◦.

BDescription of NORAD TLE

A TLE is a Two Line Element data set describing the orbital speci�cations of a given satellite.
These two lines consist of 69-characters each (including white spaces). They can be used
together with NORAD's orbital models to determine the position at a given time, and the
connected velocity of a satellite. All international letters (A-Z and 0-9) are allowed including
space, plus and minus signs.

The format can be described on the following form[3]:
1 NNNNNC NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN−N +NNNNN−N N NNNNN
2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

• N represents a 0-9 digit or some times a space.

• A represents a A-Z character or a space.

• C represents the classi�cation, the public TLE's this will be U for unclassi�ed, but it can be
S for secret.

• + represents a plus, minus or space character.

• - represents a plus or minus sign

Each value will put another set of boundaries to the values. The following schemes will give an
overview of each column of the lines:

110

Character: Description:
01 Line Number of Element Data
03-07 Satellite Number
08 Classi�cation
10-11 International Designator (Last two digits of launch year)
12-14 International Designator (Launch number of the year)
15-17 International Designator (Piece of the launch)
19-20 Epoch Year (Last two digits of year)
21-32 Epoch (Day of the year and fractional portion of the day)
34-43 First Time Derivative of the Mean Motion
45-52 Second Time Derivative of Mean Motion (decimal point assumed)
54-61 BSTAR drag term (decimal point assumed)
63 Ephemeris type
65-68 Element number
69 Checksum (Modulo 10) (Letters, blanks, periods, plus signs = 0; minus signs = 1)

Table B.1: Two-Line Element Set Format De�nition, Line 1

Character: Description:
01 Line Number of Element Data
03-07 Satellite Number
09-16 Inclination [Degrees]
18-25 Right Ascension of the Ascending Node [Degrees]
27-33 Eccentricity (decimal point assumed)
35-42 Argument of Perigee [Degrees]
44-51 Mean Anomaly [Degrees]
53-63 Mean Motion [Revs per day]
64-68 Revolution number at epoch [Revs]
69 Checksum (Modulo 10)

Table B.2: Two-Line Element Set Format De�nition, Line 2

CAccepttest speci�cation

This chapter describes how to accomplish the acceptest of the requirement speci�cation in
chapter 7 on page 37. The test is split into sequences describing the test of one or more
requirements.

Sequence 1

This sequence will test the requirements 1.11 and 1.12 This test requires a list of locations of
the ground stations in the network and a result from Predict for each ground station.

Actions:

1. The user enters a satellite ID

2. The user speci�es a period below 24 hours.

3. The user selects "Calculate �ight plan"

Success criteria:

• The �ight plan is shown to the user as a table containing entries of 1.12

• The �ight plan is shown to the user as a map containing entries of 1.12

• The ground stations in the �ight plan matches the coresponding ground stations in the ground
station list.

• The pass time of each ground station matches the result of Predict

Sequence 2

This sequence will test the requirements 1.13 and 1.14

Actions:

1. The user chooses a number of the ground station from the �ight plan

2. The user chooses to view capabilities of one of the ground stations

112

Success criteria:

• The ground stations in the table is marked at the users choice

• The ground stations in the map is marked at the users choice

• The capabilities of 1.14 is shown the the user upon choice

Sequence 3

This sequence will test the requirements 1.21 and 1.22

Actions:

1. The user selects "Book ground stations" to book the selected ground stations

Success criteria:

• It is shown to the user which ground stations have accepted and rejected the booking

• Each booking contains the information from 1.21

Sequence 4

This sequence will test the requirements 1.31 and 1.32. As it is TBD which encryption should
be used, the test of these requirements is not speci�ed yet.

Sequence 5

This sequence will test requirement 1.34

Actions:

1. The user sends and receives satellite mission data

2. The user chooses to view the data from the database

Success criteria:

• The data packets are shown to the user identi�ed by the entries in 1.34

113

Sequence 6

This sequence will test requirement 1.35

Actions:

1. The user sends and receives satellite mission data from one GSS

2. The user request the pass report from the GSS

Success criteria:

• The pass report is shown to the user containing the entries of 1.35

Sequence 7

This sequence will test requirements 1.36 and 1.37

Actions:

1. The MCC is connected to a GSS for the user to communicate with a satellite

Success criteria:

• An indicator in the user interface shows to the user whether the MCC and the GSS is
connected or not

• The data packet count for the current session is shown to the user

• The total data packet count is shown to the user

Sequence 8

This sequence will test requirements 1.41 and 1.42

Actions:

1. The MCC is connected to a GSS for the user to communicate with a satellite

2. The user changes a setting on the GSS

Success criteria:

• The current GSS settings are shown to the user

114

• The GSS settings are changeable

• The e�ect of the changes are visible in the downlink satellite mission data.

Sequence 9

This sequence will test requirements 1.51, 1.52, 1.53 and 1.54

Actions:

1. The user chooses to change the local MCC settings

2. The user chooses to change the settings of the local space craft

Success criteria:

• The local MCC settings are shown to the user

• It is possible for the user to change the MCC settings

• The local space craft settings are shown to the user with the entries of 1.52

• It is possible for the user to change the space craft settings

Sequence 10

This sequence will test requirements 1.61 and 1.62

Actions:

1. The user wants to logon the MCC

2. The user is done using the MCC and wants to logo�

Success criteria:

• It is possible to input username and password

• It is possible to choose "Logo�"

115

Sequence 11

This sequence will test requirements 1.71 and 1.72

Actions:

1. The user chooses "Debug mode" to see node and module communication

Success criteria:

• The node and module communication is shown to the user as human readable tekst.

DAcronyms

AAU Aalborg University

AMSAT The Radio Amateur Satellite Corporation

API Application Programming Interface

AS Authentication Server

ASL Authentication Server List

CES Central Server

ESA European Space Agency

FGN Federal Ground Station Network

GENSO Global Educational Network for Satellite Operations

GSMS Ground Station Management Service

GSML Ground Station Markup Language

GSS Ground Station Server

GSSL Ground Station Server List

GUI Graphical user interface

ICD Interface Control Document

IPC Inter Process Communication

ISEB International Space Education Board

JAXA Japan Aerospace Exploration Agency

MCC Mission Control Client

MGSN Mercury Ground Station Network

NASA National Aeronautics and Space Administration

OPS Operation Server

PSL Participating Satellite List

117

RQT Requirements

SSETI Student Space Exploration and Technology Initiative

TBC To Be Con�rmed

TBD To Be Determined

TLE Two-Line Element

UI User Interface

UML Uni�ed Modeling Language

UNISEC University Space Engineering Consortium

XML Extensible Markup Language

RAMS Reliability, Availability, Maintainability and Safety

CSSI Center for Space Standards and Innovation

NORAD North American Aerospace Defense Command

EGlossary of terms

Pass A pass is when a satellite is in the range of a ground station

Satellite mission data Satellite mission data is the data exchanged between the satellite and
the satellite operator/application.

Satellite application A satellite application is the application used by the satellite operator
to send and receive satellite mission data to/from the satellite.

Communication session A communication session is when a satellite application communi-
cates with the satellite. This is achieved by connecting a satellite application to the MCC
which forwards the satellite mission data to a GSS. The GSS will take care of the radio
communication with the satellite. A communication session ends when the satellite is out of
range.

Flight plan A �ight plan is a set of satellite passes which is available for reservation or already
reserved.

Time window A time window is the time between a given start time and a given end time.

